共查询到20条相似文献,搜索用时 93 毫秒
1.
基于粗糙集-LVQ神经网络的入侵检测模型研究 总被引:2,自引:0,他引:2
提出了一种基于粗糙集-LVQ神经网络的入侵检测模型。首先将粗糙集作为前置处理系统对属性进行约简,再根据粗糙集处理后的学习样本集,构建LVQ神经网络结构,实现对入侵进行检测。实验结果表明该方法优于其他同类方法。 相似文献
2.
针对目前实时入侵检测系统所处理的网络数据具有的非线性和高维的特点,提出基于粗糙集理论的进化神经网络入侵检测方法。对网络中截获的数据,利用粗糙集属性约简方法对其属性集进行约简,得到影响分类精度的重要属性。把约简后形成的训练样本进行数值化和归一化处理,作为神经网络的输入数据,再利用遗传算法较强的宏观搜索能力和全局寻优的特点,优化神经网络权值,并在此基础上进行神经网络学习,从而建立入侵检测系统的优化分析模型。实验结果表明,该算法学习速度快,有效提高了入侵检测系统的检测效率。 相似文献
3.
神经网络在入侵检测系统中的应用 总被引:2,自引:2,他引:2
本文简要分析了当前的几种入侵检测方法,指出了将神经网络应用于入侵检测系统的优越性。重点介绍了LVQ神经网络的结构及其学习算法,提出了将LVQ神经网络用于入侵检测系统的方法,并给出了基于LVQ神经网络的网络入侵检测系统模型结构。最后,用matlab进行了仿真实验。结果表明,运用LVQ神经网络检测入侵,可以达到较高的准确检测率,是一种有效的入侵检测手段。 相似文献
4.
基于粗糙集-神经网络的入侵检测方法研究 总被引:2,自引:0,他引:2
彭宏 《计算机工程与应用》2004,40(20):143-145
提出了一种融合粗糙集与神经网络的入侵检测方法。首先用粗糙集约简属性、简化神经网络设计,然后通过神经网络进行入侵检测。实验结果表明该方法优于其他同类方法。 相似文献
5.
神经网络在入侵检测系统中的应用 总被引:1,自引:0,他引:1
本文简要分析了当前的几种入侵检测方法,指出了将神经网络应用于入侵检测系统的优越性.重点介绍了LVQ神经网络的结构及其学习算法,提出了将LVQ神经网络用于入侵检测系统的方法,并给出了基于LVQ神经网络的网络入侵检测系统模型结构.最后,用matlab进行了仿真实验.结果表明,运用LVQ神经网络检测入侵,可以达到较高的准确检测率,是一种有效的入侵检测手段. 相似文献
6.
基于粗糙集理论和BP神经网络入侵检测模型 总被引:2,自引:0,他引:2
研究网络入侵准确检测问题.针对入侵检测系统存在的比较高的漏报率以及高的误报率,同时也存在入侵检测的数据存在维数大、冗余度高等缺陷.为了保证网络的安全防护技术的实时性和有效性,结合领域粗糙集和BP神经网络算法的优点,提出了一种新的基于领域粗糙集理论和BP神经网络算法的入侵检测算法.首先在粗糙集理论的基础上引入领域概念,减少信息的丢失,利用领域粗糙集理论进行数据的约简,将简化的数据集作为BP神经网络输入数据,可简化BP神经网络的结构,同时缩短了样本训练时间,有效提高了BP神经网络分类正确率.在Matlab上进行仿真的结果表明,所提出的入侵检测算法,训练样本时间更短,入侵识别率和检测率却有了较以前的传统算法更高的准备率. 相似文献
7.
一种基于粗糙集理论和BP神经网络的入侵检测新方法 总被引:2,自引:0,他引:2
针对入侵检测数据存在维数大、冗余度高及噪声数据较多的缺陷,结合粗糙集理论和BP神经网络在数据处理方面的优势,提出了一种入侵检测新方法(RSBP). RSBP利用粗糙集理论进行数据约简时,为得到一组最小相对约简,提出一种基于遗传算法的属性约简算法.将简化的数据集作为BP网络的输入数据,可以简化BP网络的结构、缩短训练时间且提高了BP网络分类准确率.通过实验将RSBP与基于主成分分析(PCA)和BP网络的入侵检测方法(PCABP)做比较,实验结果表明,RSBP的训练时间更短、检测的准确率更高. 相似文献
8.
该文首先对关键件技术概述,然后从其关键技术进行分析,进而对其所存在的相关问题进行详细剖析,从而提出了具有智能化、检测未知或变异攻击的能力、可扩展和自适应性的入侵检测系统概念。 相似文献
9.
介绍了入侵检测系统模型的结构,应用粗糙集理论实现了一个网络连接的入侵检测系统,用于监控网络的异常行为.在分析基于神经网络的入侵检测模型基础上,将其中的综合分类器采用区分矩阵的属性约简算法对输入及隐含层节点进行约简的优化设计.经实验表明,粗糙集理论应用于多类分类问题和未知攻击的检测方面是有效的. 相似文献
10.
研究网络入侵检测准确度问题.针对入侵检测系统存在的比较高的漏报率以及高的误报率等缺陷,根据CP神经网络算法的优点,提出了一种改良型的CP神经网络入侵检测算法.算法采用已学习好的二值神经网络将简化的数据集作为CP神经网络输入数据,这样简化了CP神经网络的结构,解决了直接用CP学习造成的训练样本数量过大而难以收敛的问题,同时缩短了样本训练时间,有效提高了CP神经网络分类正确率.在Matlab平台上进行仿真的结果表明,所提出的新的入侵检测算法,训练样本时间更短,与传统网络入侵检测系统模型相比,具有更好的入侵识别率和检测率. 相似文献
11.
12.
随着网上金融和电子商务的迅速发展,在线购物、网上理财的用户数量急速上升,人们日益享受着互联网带来的便利,与此同时,以网上理财、在线购物等电子商务用户为主要攻击目标的网络钓鱼活动也迅速蔓延。网络钓鱼严重损害了网络用户以及网络服务提供商的利益,影响我国电子商务的发展。本文提出了一种基于LVQ神经网络的反钓鱼技术,通过综合分析钓鱼网址的URL特征和页面特征,并进行自动分类,取得了良好的检测效果。 相似文献
13.
Abstract: Intrusion detection is important in the defense‐in‐depth network security framework. This paper presents an effective method for anomaly intrusion detection with low overhead and high efficiency. The method is based on rough set theory to extract a set of detection rules with a minimal size as the normal behavior model from the system call sequences generated during the normal execution of a process. It is capable of detecting the abnormal operating status of a process and thus reporting a possible intrusion. Compared with other methods, the method requires a smaller size of training data set and less effort to collect training data and is more suitable for real‐time detection. Empirical results show that the method is promising in terms of detection accuracy, required training data set and efficiency. 相似文献
14.
15.
针对基于深度学习的网络入侵检测技术存在检测效率低、模型训练易出现过拟合和泛化能力较弱的问题,提出一种基于改进卷积神经网络(ICNN)的入侵检测模型(IBIDM)。与传统"卷积-池化-全连接"层叠式网络设计方式不同,该模型采用跨层聚合网络的设计方式。首先,将预处理后的训练集数据作为输入数据前向传播并提取网络特征,对跨层聚合网络的输出数据执行合并操作;然后,根据分类结果计算训练误差并通过反向传播过程进行迭代优化至模型收敛;最后,利用训练好的分类器对测试数据集进行分类测试。实验结果表明,IBIDM具有较高的入侵检测准确率和真正率,且误报率较低。 相似文献
16.
17.
根据TCP/IP协议族攻击的特征,提出在传输层上将捕获的数据包分成三类(UDP、TCP和ICMP)分别进行编码并输入到三个不同的神经网络中训练、检测。根据以上思想设计并实现了一个基于BP神经网络的实时入侵检测系统的原型。该原型系统具有通用性和可扩展性,能够根据需要灵活调整网络结构和训练参数,可以发展为更精确的网络入侵检测系统。最后给出了实验设计及其结果,证明了文中对数据包分类处理的方法既能减少网络训练的次数,又能提高网络检测的精度。 相似文献
18.
夏淑华 《网络安全技术与应用》2013,(3):74-75,59
为了解决由于入侵检测样本数据多和冗余属性导致的BP神经网络训练速度慢和效率低的问题,本文提出利用模糊k均值聚类算法对样本数据依据和目标属性相关性和隶属度强弱进行聚类,优化神经网络权值。实验表明,该算法检测的准确率较高,网络入侵检测的性能和效率都得到了提高。 相似文献
19.
基于粗糙集理论的神经网络研究及应用 总被引:2,自引:0,他引:2
为了补偿神经网络的黑箱特性并提高其工作性能,将粗糙集理论同神经网络结合起来,提出一种基于粗糙集的神经网络体系结构.首先,利用粗糙集理论对神经网络初始化参数的选择和确定进行指导,赋予各参数相关的物理意义;然后,以系统输出误差最小化为目标对粗糙神经网络进行训练,使其满足性能要求.实验结果表明,粗糙神经网络能较好地完成数据挖掘任务,并能获得较高的分类精度. 相似文献
20.
基于改进RBF神经网络的入侵检测研究 总被引:1,自引:0,他引:1
近年来,神经网络技术在入侵检测中得到了广泛应用,其中最具代表的是BP神经网络,但其本身所具有的局部极小性质限制了检测性能的提高。RBF神经网络在一定程度上克服了BP神经网络存在的问题,但如何确定一个合适的RBF网络隐层神经元中心个数又是保证其应用效果的关键之一。因此,将基于熵的模糊聚类和RBF神经网络相结合,提出了基于EFC的改进RBF神经网络算法,并将该方法应用于入侵检测研究。实验表明,该算法可以获得满意的性能。 相似文献