首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到13条相似文献,搜索用时 62 毫秒
1.
采用共沉淀法制备前驱体,高温固相合成正极材料Li(Ni0.6Co0.2Mn0.21-xCuxO2(x=0、0.01、0.015和0.02),通过X射线衍射、SEM和电池测试系统及电化学工作站测试,对其结构、形貌和电化学性能进行表征.结果表明,掺杂少量的Cu, 样品均具有α-NaFeO2型结构,没有出现杂相; 样品(108)/(110)峰分裂明显,材料有着良好的层状结构;随着Cu掺杂量的增加,c和c/a增大,层间距增大,Li+脱嵌通道增大,改善导电性.Cu掺杂1 %和1.5 %的I(003)/I(104)比值分别为1.467、1.438,比0 %的1.431值大,减小了阳离子混排.首次放电比容量依次为170.6 mAh/g、164.1 mAh/g、163.6 mAh/g和162.4 mAh/g,当x为0,1 %,2 %经过100次循环,保持率为87.1 %、98.7 %、和87.7 %;x为1.5 %,比容量从161.8 mAh/g增加到173.9 mAh/g,性能较优.   相似文献   

2.
采用共沉淀法合成LiNi0.5Mn0.5O2正极材料.采用X射线衍射(XRD)和扫描电镜(SEM)表征合成材料的结构和形貌.研究不同Li/(Mn+Ni)摩尔比、不同焙烧制度、不同化成制度对LiNi0.5Mn0.5O2的电化学性能的影响.结果表明,当Li/(Mn+Ni)摩尔比1.08、一次焙烧温度为500℃,二次焙烧温度为850℃下焙烧得到的材料电化学性能最佳.   相似文献   

3.
采用循环伏安、交流阻抗法对添加导电炭黑(SP)和导电炭黑复合石墨烯(SP+G)的两组不同导电剂,与LiNi0.5Co0.2Mn0.3O2组装成的电池进行锂离子脱嵌动力学研究,通过计算锂离子扩散系数探究不同导电剂对LiNi0.5Co0.2Mn0.3O2锂离子脱嵌动力学的影响。电化学性能测试表明,添加单一导电剂SP和复合导电剂SP+G的首次放电比容量分别为166、184 mAh/g,添加复合导电剂SP+G的放电比容量显著提升。   相似文献   

4.
采用共沉淀法合成Ni_(0.5)Co_(0.2)Mn_(0.3)(OH)_2前驱体,将前驱体和LiOH混合均匀后经高温煅烧合成了锂离子电池正极材料LiNi_(0.5)Co_(0.2)Mn_(0.3)O_2,并对其进行电化学性能检测。试验表明,制备的电池在电压2.8~4.3V(vs.Li/Li+)区间内,0.1C倍率下的首次库伦效率为88.4%;在1C倍率下循环100次后,放电比容量为157.7mAh/g,容量保持率为96.6%。  相似文献   

5.
成本低、性能稳定的无钴镍锰正极材料是目前的研究热点。采用共沉淀法制备Ni0.8Mn0.2(OH)2前驱体, 用氨水作为络合剂, 探究了NH3浓度对前驱体Ni0.8Mn0.2(OH)2共沉淀的晶粒生长和形貌的影响, 以及对锂离子电池正极材料LiNi0.8Mn0.2O2的晶体结构和电化学性能的影响。通过X射线衍射仪、扫描电镜、循环伏安测试、交流阻抗和电池充放电测试系统表征材料的结构、形貌和电化学性能。表征结果显示, 在0.1 C, 2.5~4.2 V化成条件下, 初始放电比容量为167 mAh/g, 充放电效率为96%。当氨水用量为45 mL时, 样品具有较优的循环性能, 在1 C倍率下, 2.5~4.2 V的电压测试范围内, 循环100次后, 放电比容量为139 mAh/g, 容量保持率为93.9%。在低倍率充放电条件下样品具有明显优于其他材料的电化学性能。   相似文献   

6.
采用简单的机械球磨混合法制得NCM@LMFP/C(LiNi0.6Co0.2Mn0.2O2@LiMn0.6Fe0.4PO4/C)复合正极材料,系统地研究了NCM与LMFP/C复合比例(9∶1,8∶2,7∶3,6∶4,5∶5)对材料电化学性能和热稳定性的影响.使用X射线衍射仪(XRD)、扫描电子显微镜(SEM)和差示扫描量热仪(DSC)对复合正极材料的结构与形貌进行表征研究.研究结果表明:当NCM与LMFP/C复合比例小于8∶2时,亚微米级LMFP/C出现富集、团聚,将NCM包埋其中.当NCM与LMFP/C复合比例为8∶2时,LMFP/C均匀地包覆在NCM颗粒表面或填充于其颗粒空隙中,材料的电化学性能最优、热稳定性良好:电流为0.1 C和1 C时的放电比容量分别为180.1和165.0 mAh/g,均高于理论测算容量(178.9和164.3 mAh/g);循环80周后容量保持率为95.7%,优于NCM(94.9%);复合正极材料热失控温度...  相似文献   

7.
采用共沉淀-高温固相法制备LiNi1/3Mn1/3Co1/3O2正极材料,利用XRD和SEM对所制试样的晶体结构和形貌进行表征,研究了烧结温度对材料电化学性能的影响.结果表明,焙烧温度为850 ℃制备的材料具有较好电化学性能,在25 ℃,电压范围为2.75~4.2 V,1 C充电6 C放电下首次放电比容量为124.2 mAh/g,50次循环后容量保持率为95.2 %.   相似文献   

8.
解决镍基正极材料LiNi0.8Co0.1Mn0.1O2的电化学循环稳定性和高温循环性能是其产业化推广应用的关键。研究了掺杂铌改性高镍正极材料,优化材料的电化学性能,提升循环稳定性。首先以硫酸盐为原料,在N2保护气氛下,采用共沉淀法合成三元球形Ni0.8Co0.1Mn0.1(OH)2前驱体,通过高温固相反应与LiOH·H2O,Nb2O5合成Li(Ni0.8Co0.1Mn0.11-xNbxO2(x=0,0.01,0.02,0.03)系列正极材料。X射线衍射结果表明,Nb5+离子可少量进入正极材料晶格,并在正极材料表面形成化学稳定性好的Li3NbO4。当x=0.02时,在室温25 ℃,电压2.75~4.2 V,0.2 C倍率下首次放电比容量为172.9 mAh/g,100次循环后容量保持率为97.47%,在50 ℃,0.5 C倍率下循环20次容量基本不变,平均放电比容量为183.7 mAh/g,且该样品具有较好的倍率性能。   相似文献   

9.
使用LiNi0.5Co0.2Mn0.3O2正极材料制作出软包电池,在不同电压上限(4.2 V、4.25 V、4.3 V、4.35 V)下进行电化学测试,再采用X射线衍射(XRD)和扫描电镜(SEM), 对循环100次后的极片进行结构和形貌表征. XRD图谱表明,循环100次后的材料仍具有α-NaFeO2型结构,并且仍是层状结构,但电压上限为4.35 V时材料I003/I104值小于1.2,出现了较高的阳离子混乱.在4.2 V、4.25 V、4.3 V和4.35 V的电压上限下,电池的首次放电容量依次为161.5 mAh/g、162.9 mAh/g、169.2 mAh/g和176.6 mAh/g.相较于4.2 V,电压上限为4.25 V、4.3 V和4.35 V时, 容量提高率依次为0.87%、4.77%和9.35%.电压上限为4.2 V、4.25 V、4.3 V和4.35 V的电池200次循环(0.2 C)测试后,容量保持率依次为95.09%、94.41%、95.52%、95.56%.虽然电压上限为4.35 V时材料出现阳离子无序,但其电化学性能却是最好的,可能是由于Co离子高价迁移到Li层时注入过量电荷,使通过大的二次粒子内部晶界网络时具有高电子传导性.   相似文献   

10.
采用共沉淀-高温固相法合成单晶LiNi0.83Co0.1Mn0.07O2正极材料。采用XRD,SEM和恒流充放电等测试手段对材料的晶体结构、形貌和电化学性能等进行研究。测试结果表明,材料形成形貌良好的单晶颗粒,Li+/Ni2+离子混排程度较低,材料具有良好的a-NaFeO2层状结构。在2.75~4.3 V下,扣式电池0.1 C首次放电比容量达209.63 mAh/g,库仑效率为91.19%,0.2 C循环100次后容量保持率为100.09%。   相似文献   

11.
将超级导电炭黑Super-P(SP),碳纳米管(CNT)和石墨烯(GN)任取2种等比例添加到LiNi0.5Co0.2Mn0.3O2中制备扣式电池,探究二元导电剂对电池性能的影响,此外设立单一导电剂SP作为对照组。采用X射线衍射仪分析导电剂的结构,并使用扫描电镜分析导电剂的形貌,此外还测试了电池的电化学性能。添加质量分数为3% GN/SP二元导电剂的电池首次放电比容量最高,为181.1 mAh/g; 添加质量分数为3% CNT/GN二元导电剂的电池循环性能最好,0.2 C循环100周容量保持率为76.2%;添加质量分数为3% CNT/SP二元导电剂的电池倍率性能最优,阻抗最低。结果表明,二元导电剂对电池性能的提升能力均优于单一导电剂SP。   相似文献   

12.
采用共沉淀法合成类球形氢氧化镍钴锰前驱体,经混料机与碳酸锂均匀混合,在氧化气氛下经过高温焙烧得到LiNi0.55Co0.15Mn0.30O2化学组分的三元正极材料.通过设计合理的配锂量、保温时间、气氛条件,并对烧制温度设计试验进行考察研究,最终优选出较优的工艺条件.   相似文献   

13.
The layered material of Ce-doped LiNi1/3Mn1/3Co1/3O2 with α-NaFeO2 was synthesized by a co-precipitation method. X-ray diffraction (XRD) showed that Ce-doped LiNi1/3Mn1/3Co1/3O2 had the same layered structure as the undoped LiNi1/3Mn1/3Co1/3O2. The scanning electron microscopy (SEM) images exhibited that the particle size of Ce-doped LiNi1/3Mn1/3Co1/3O2 was smaller than that of the undoped LiNi1/3Mn1/3Co1/3O2. The Ce-doped LiNi1/3Mn1/3Co1/3O2 samples were investigated on the Li extraction/insertion performances through charge/discharge, cyclic voltammogram (CV), and electrochemical impedance spectra (EIS). The optimal doping content of Ce was x=0.02 in the LiNi1/3-xMn1/3Co1/3CexO2 samples to achieve high discharge capacity and good cyclic stability. The electrode reaction reversibility was enhanced, and the charge transfer resistance was decreased through Ce-doping. The improved electrochemical performances of the Ce-doped LiNi1/3Mn1/3Co1/3O2 cathode materials were attributed to the addition of Ce4+ ion by stabilizing the layer structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号