首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Wireless networks that utilize dynamic channel allocation (DCA) are known to perform better than those with fixed channel allocation, in terms of the call level QoS measures such as the handoff dropping probability. On account of this, the DCA networks are usually designed without the call admission control (CAC). However, given the decrease of cell sizes, together with ever increasing mobile phone and terminal population, dynamic channel allocation policies (such as channel borrowing) may not be sufficient to cope with the hot-spot area size and its traffic intensity. This paper analyses the performance of the DCA networks, both with and without the call admission control, under the hot-spot traffic regime. In such cases, the pure DCA approach fails to ensure sufficiently low level of QoS in both the hot-spot area and the surrounding cells. We propose a CAC policy that can stabilize the QoS under non-uniform traffic, whilst being easy to integrate in the distributed DCA policies.  相似文献   

2.
The General Packet Radio Service (GPRS) offers performance guaranteed packet data services to mobile users over wireless frequency-division duplex links with time division multiple access, and core packet data networks. This paper presents a dynamic adaptive guaranteed Quality-of-Service (QoS) provisioning scheme over GPRS wireless mobile links by proposing a guaranteed QoS media access control (GQ-MAC) protocol and an accompanying adaptive prioritized-handoff call admission control (AP-CAC) protocol to maintain GPRS QoS guarantees under the effect of mobile handoffs. The GQ-MAC protocol supports bounded channel access delay for delay-sensitive traffic, bounded packet loss probability for loss-sensitive traffic, and dynamic adaptive resource allocation for bursty traffic with peak bandwidth allocation adapted to the current queue length. The AP-CAC protocol provides dynamic adaptive prioritized admission by differentiating handoff requests with higher admission priorities over new calls via a dynamic multiple guard channels scheme, which dynamically adapts the capacity reserved for dealing with handoff requests based on the current traffic conditions in the neighboring radio cells. Integrated services (IntServ) QoS provisioning over the IP/ATM-based GPRS core network is realized over a multi-protocol label switching (MPLS) architecture, and mobility is supported over the core network via a novel mobile label-switching tree (MLST) architecture. End-to-end QoS provisioning over the GPRS wireless mobile network is realized by mapping between the IntServ and GPRS QoS requirements, and by extending the AP-CAC protocol from the wireless medium to the core network to provide a unified end-to-end admission control with dynamic adaptive admission priorities.  相似文献   

3.
As channel allocation schemes become more complex and computationally demanding in cellular radio networks, alternative computational models that provide the means for faster processing time are becoming the topic of research interest. These computational models include knowledge-based algorithms, neural networks, and stochastic search techniques. This paper is concerned with the application of a Hopfield (1982) neural network (HNN) to dynamic channel allocation (DCA) and extends previous work that reports the performance of HNN in terms of new call blocking probability. We further model and examine the effect on performance of traffic mobility and the consequent intercell call handoff, which, under increasing load, can force call terminations with an adverse impact on the quality of service (QoS). To maintain the overall QoS, it is important that forced call terminations be kept to a minimum. For an HNN-based DCA, we have therefore modified the underlying model by formulating a new energy function to account for the overall channel allocation optimization, not only for new calls but also for handoff channel allocation resulting from traffic mobility. That is, both new call blocking and handoff call blocking probabilities are applied as a joint performance estimator. We refer to the enhanced model as HNN-DCA++. We have also considered a variation of the original technique based on a simple handoff priority scheme, here referred to as HNN-DCA+. The two neural DCA schemes together with the original model are evaluated under traffic mobility and their performance compared in terms of new-call blocking and handoff-call dropping probabilities. Results show that the HNN-DCA++ model performs favorably due to its embedded control for assisting handoff channel allocation  相似文献   

4.
一种用于提供QoS保证的准入控制方法   总被引:5,自引:1,他引:4       下载免费PDF全文
傅晓明  张尧学 《电子学报》2000,28(10):82-85
本文推导了ON/OFF马尔可夫数据流的资源分配与延迟分布、丢失率的关系,在此基础上进行可准入性测试,并根据流的优先权大小给出一种优化的准入控制方法,可为各类流提供服务质量(QoS)保证.最后通过算例说明该方法的有效性.  相似文献   

5.
Channel assignment in multichannel multiradio wireless mesh networks is a powerful resource management tool to exploit available multiple channels. Channels can be allocated either statically on the basis of long‐term steady state behavior of traffic or dynamically according to actual traffic demands. It is a common belief that dynamic schemes provide better performance; however, these two broad classes of channel allocation schemes have not been compared in detail. In this paper, we quantify the achievable performance gain and fairness improvement through an optimal dynamic channel allocation scheme. We develop optimal algorithms for a dynamic and three static schemes using mixed integer linear programming and compare them in the context of QoS provisioning, where network performance is measured in terms of acceptance rate of QoS sensitive traffic demands. Our extensive simulations show that static schemes should optimize channel allocation for long‐term traffic pattern and maintain max–min fairness to achieve acceptable performances. Although the dynamic and max–min fair static schemes accomplish the same fairness, the dynamic channel allocation outperforms the static scheme about 10% in most cases. In heavily overloaded regimes, especially when network resources are scarce, both have comparable performances, and the max–min fair scheme is preferred because it incurs less overhead. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

6.
This paper addresses when and how to adjust bandwidth allocation on uplink and downlink in a multi-service mobile wireless network under dynamic traffic load conditions. Our design objective is to improve system bandwidth utilization while satisfying call level QoS requirements of various call classes. We first develop a new threshold-based multi-service admission control scheme (DMS-AC) as the study base for bandwidth re-allocation. When the traffic load brought by some specific classes under dynamic traffic conditions in a system exceeds the control range of DMS-AC, the QoS of some call classes may not be guaranteed. In such a situation, bandwidth re-allocation process is activated and the admission control scheme will try to meet the QoS requirements under the adjusted bandwidth allocation. We explore the relationship between admission thresholds and bandwidth allocation by identifying certain constraints for verifying the feasibility of the adjusted bandwidth allocation. We conduct extensive simulation experiments to validate the effectiveness of the proposed bandwidth re-allocation scheme. Numerical results show that when traffic pattern with certain bandwidth asymmetry between uplink and downlink changes, the system can re-allocate the bandwidth on uplink and downlink adaptively and at the same time improve the system performance significantly.  相似文献   

7.
Most recently proposed wireless dynamic channel allocation methods have used carrier-to-interference (C/I) information to increase the system performance. Power control is viewed as essential for interference-limited systems. However, the performance of such systems under an imbalance of load among cells, as may occur often in microcells, is largely unknown. Here, we study a typical interference-limited dynamic channel allocation policy. Calls are accepted if a channel can be assigned that will provide a minimum C/I, and power control and intracell handoffs are used to maintain this level. We focus on the relationship between system performance and the amount of imbalance in load among neighboring cells. Previous studies for systems that do not use C/I information have found that dynamic channel allocation (DCA) outperforms fixed channel allocation (FCA) in all but heavily loaded systems with little load imbalance. We present two principal new results. First, we find that with use of C/I information, the difference in performance between FCA and DCA (in terms of throughput or blocking probability) is increasing with load imbalance. DCA was found to be more effective in congestion control at the cost of a slightly lower call quality. Second, we find that use of power control to maintain a minimum C/I results in two equilibrium average power levels for both DCA and FCA, with DCA using a higher average power than FCA, and that while DCA's power is increasing with load imbalance, FCA's average power is decreasing with load imbalance  相似文献   

8.
Low Earth Orbit (LEO) satellite networks are deployed as an enhancement to terrestrial wireless networks in order to provide broadband services to users regardless of their location. In addition to global coverage, these satellite systems support communications with hand-held devices and offer low cost-per-minute access cost, making them promising platform for Personal Communication Services (PCS). LEO satellites are expected to support multimedia traffic and to provide their users with the negotiated Quality of Service (QoS). However, the limited bandwidth of the satellite channel, satellite rotation around the Earth and mobility of end-users makes QoS provisioning and mobility management a challenging task. One important mobility problem is the intra-satellite handoff management. The main contribution of this work is to propose Q-Win, a novel call admission and handoff management scheme for LEO satellite networks. A key ingredient in our scheme is a companion predictive bandwidth allocation strategy that exploits the topology of the network and contributes to maintaining high bandwidth utilization. Our bandwidth allocation scheme is specifically tailored to meet the QoS needs of multimedia connections. The performance of Q-Win is compared to that of two recent schemes proposed in the literature. Simulation results show that our scheme offers low call dropping probability, providing for reliable handoff of on-going calls, good call blocking probability for new call requests, while maintaining bandwidth utilization high.  相似文献   

9.
Quality-of-service (QoS) provisioning and location management (LM) in cellular networks are solved separately in previous work. For realistic network environments, we have proposed a framework of combining QoS provisioning and LM by using all available user mobility information. In this paper, we present performance evaluation to show that this framework can yield more efficient solutions for both. We propose a novel path-based LM scheme in this combined framework and evaluate the performance gain of the new scheme over the original path-based LM scheme by simulations. Further, we propose a new connection admission control (CAC) scheme derived from this combined framework for QoS provisioning and present results showing performance enhancements over CAC schemes proposed previously.  相似文献   

10.
Resource management for QoS support in cellular/WLAN interworking   总被引:3,自引:0,他引:3  
To provide mobile users with seamless Internet access anywhere and anytime/ there is a strong demand for interworking mechanisms between cellular networks and wireless local area networks in the next-generation all-IP wireless networks. In this article we focus on resource management and call admission control for QoS support in cellular/WLAN interworking. In specific, a DiffServ interworking architecture with loose coupling is presented. Resource allocation in the interworking environment is investigated/ taking into account the network characteristics, vertical handoff, user mobility, and service types. An effective call admission control strategy with service differentiation is proposed for QoS provisioning and efficient resource utilization. Numerical results demonstrate the effectiveness of the proposed call admission control scheme.  相似文献   

11.
The architecture in a differentiated services (DiffServ) network is based on a simple model that applies a per‐class service in the core node of the network. However, because the network behavior is simple, the network structure and provisioning is complicated. If a service provider wants dynamic provisioning or a better bandwidth guarantee, the differentiated services network must use a signaling protocol with QoS parameters or an admission control method. Unfortunately, these methods increase the complexity. To overcome the problems with complexity, we investigated scalable dynamic provisioning for admission control in DiffServ networks. We propose a new scalable qDPM2 mechanism based on a centralized bandwidth broker and distributed measurement‐based admission control and movable boundary bandwidth management to support heterogeneous QoS requirements in DiffServ networks.  相似文献   

12.
Niyato  D. Hossain  E. 《IEEE network》2005,19(5):5-11
This article presents a survey on the issues and the approaches related to designing call admission control schemes for fourth-generation wireless systems. We review the state of the art of CAC algorithms used in the traditional wireless networks. The major challenges in designing the CAC schemes for 4G wireless networks are identified. These challenges are mainly due to heterogeneous wireless access environments, provisioning of quality of service to multiple types of applications with different requirements, provisioning for adaptive bandwidth allocation, consideration of both call-level and packet-level performance measures, and consideration of QoS at both the air interface and the wired Internet. To this end, architecture of a two-tier CAC scheme for a differentiated services cellular wireless network is presented. The proposed CAC architecture is based on the call-level and packet-level QoS considerations at both the wireless and wired parts of the network. A performance analysis model for an example CAC scheme based on this architecture is outlined, and typical numerical results are presented.  相似文献   

13.
14.
Distributed dynamic channel assignment for in-building microsystems   总被引:1,自引:0,他引:1  
Several fully distributed measurement-based dynamic channel assignment (DCA) schemes are compared for the large-scale uncoordinated deployment of in-building microsystems: DCA based on the first quality of service (DCA-FQZOS) channel selection, DCA based on best QOS channel selection (DCA-BQOS), DCA-WO (channel) (DCA with weighted channel orderings), and DCA-WO (carrier) (DCA with weighted carrier orderings). The DCA schemes are evaluated in terms of their blocking probabilities and algorithm processing delay. We also investigate how the DCA performance depends on the number of radio ports per base station, asynchronous time-slot transmission, and propagation conditions. Of the proposed DCA schemes, the simulation results show that there are tradeoffs in selecting a DCA scheme. Finally, a new scheme called DCA with limited selection weighted ordering (DCA-LSWO) is proposed that combines some previous strategies to improve performance for in-building microsystems  相似文献   

15.
In broadband satellite access networks, the efficient management of the return channel transmission capacity is key in reducing the service cost while satisfying the QoS requirements of IP-based multimedia applications. In this article a dynamic capacity allocation scheme based on combined free/demand assignment multiple access is proposed, allowing the return channel capacity to be efficiently shared among many user terminals. Simulation results indicate that the proposed scheme provides adequate DiffServ IP QoS support while maintaining high satellite bandwidth utility and reduced DCA signaling overhead.  相似文献   

16.
Frequent spotbeam handovers in low earth orbit (LEO) satellite networks require a technique to decrease the handover blocking probabilities. A large variety of schemes have been proposed to achieve this goal in terrestrial mobile cellular networks. Most of them focus on the notion of prioritized channel allocation algorithms. However, these schemes cannot provide the connection-level quality of service (QoS) guarantees. Due to the scarcity of resources in LEO satellite networks, a connection admission control (CAC) technique becomes important to achieve this connection-level QoS for the spotbeam handovers. In this paper, a geographical connection admission control (GCAC) algorithm is introduced, which estimates the future handover blocking performance of a new call attempt based on the user location database, in order to decrease the handover blocking. Also, for its channel allocation scheme, an adaptive dynamic channel allocation (ADCA) scheme is introduced. By simulation, it is shown that the proposed GCAC with ADCA scheme guarantees the handover blocking probability to a predefined target level of QoS. Since GCAC algorithm utilizes the user location information, performance evaluation indicates that the quality of service (QoS) is also guaranteed in the non-uniform traffic pattern.  相似文献   

17.
It is known that dynamic allocation of channels and power in a frequency/time-division multiple access system can improve performance and achieve higher capacity. Various algorithms have been separately proposed for dynamic channel assignment (DCA) and power control. Moreover, integrated dynamic channel and power allocation (DCPA) algorithms have already been proposed based on simple power control algorithms. In this paper, we propose a DCPA scheme based on a novel predictive power control algorithm. The minimum interference DCA algorithm is employed, while simple Kalman filters are designed to provide the predicted measurements of both the channel gains and the interference levels, which are then used to update the power levels. Local and global stability of the network are analyzed and extensive computer simulations are carried out to show the improvement in performance, under the dynamics of user arrivals and departures and user mobility. It is shown that call droppings and call blockings are decreased while, on average, fewer channel reassignments per call are required.  相似文献   

18.
19.
In this paper a dynamic channel reservation and call admission control scheme is proposed to provide QoS guarantees in a mobile wireless network using the concept of influence curve. The basic idea behind the proposed scheme is that a moving user, in addition to its requirements in the current cell, exerts some influence on the channel allocation in neighboring cells. Such an influence is related to the moving pattern of the users and is calculated statistically. Furthermore we developed a general analytical model to calculate the corresponding blocking probabilities for wireless networks with multiple platforms, which removes the commonly used assumption that new calls and handoff calls have same channel holding time. The numerical results demonstrate that our scheme outperforms traditional channel reservation schemes and can effectively adapt to the real time network conditions.  相似文献   

20.
Providing quality of service (QoS) guarantees is important in the third generation (3G) and the fourth generation (4G) cellular networks. However, large‐scale fading and non‐stationary small‐scale fading can cause severe QoS violations. To address this issue, we design QoS provisioning schemes, which are robust against time‐varying large scale path loss, shadowing, non‐stationary small scale fading, and very low mobility. In our design, we utilize our recently developed effective capacity technique and the time‐diversity dependent power control proposed in this paper. The key elements of our QoS provisioning schemes are channel estimation, power control, dynamic channel allocation, and adaptive transmission. The advantages of our QoS provisioning schemes are (1) power efficiency, (2) simplicity in QoS provisioning, (3) robustness against large‐scale fading and non‐stationary small‐scale fading. Simulation results demonstrate that the proposed algorithms are effective in providing QoS guarantees under various channel conditions. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号