首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 62 毫秒
1.
研究了不同组成FCC轻汽油(LCG.1和LCG.2)在小型提升管实验装置上催化裂解增产丙烯的性能,以及与回炼油浆进行组合进料回炼时增产丙烯的协同效应。实验结果表明,富含烯烃的轻汽油LCG.2更容易发生催化裂解反应生成丙烯。相同反应条件下,LCG.2的丙烯产率以及丙烯选择性均高于LCG.1;而且,轻汽油与回炼油浆组合进料回炼时,干气产率明显降低,汽油烯烃含量大幅下降,产物分布得到明显改善。  相似文献   

2.
在实沸点蒸馏装置上将催化裂解汽油切割为不同沸点范围的窄馏分,在小型固定流化床装置上,对这些窄馏分汽油催化转化增产低碳烯烃进行了研究。试验结果表明:以初馏点~110℃的窄馏分汽油为原料时,反应温度为610℃时,丙烯产率最大,为25.49%;丙烯大部分来自原料中烯烃的裂解,少量的丙烯由正构烷烃、异构烷烃以及带有侧链的芳烃和环烷烃裂解得到;窄馏分汽油经芳烃抽提处理后丙烯产率增加。  相似文献   

3.
王超  王定博  李普阳  戴伟 《石油化工》2005,34(Z1):85-86
研究了不同载体与ZRP分子筛制成的催化剂对汽油中烯烃催化转化制丙烯和乙烯的性能,考察了催化剂中ZRP分子筛的含量对烯烃转化率和丙烯、乙烯产率的影响.结果表明,SiO2作为载体较适宜,当ZRP分子筛质量分数为50%时效果较好.  相似文献   

4.
王红秋  董政 《石化技术》2012,(1):56-59,70
随着石化工业的快速发展,乙烯蒸汽裂解装置和炼油厂催化裂化装置的C4及C4以上烯烃副产物大量增加,采用催化裂解工艺将其转化为丙烯和乙烯,且丙烯乙烯质量比较高,不仅提高了副产物的附加值,而且拓展了低碳烯烃的原料来源。本文综述了烯烃催化裂解技术的特点、研究进展和工业应用情况。  相似文献   

5.
FCC轻汽油组合回炼增产丙烯的研究   总被引:4,自引:0,他引:4  
 以恒源石化提供的FCC轻汽油(LCG)和回炼油以及大庆炼油厂提供的蜡油(VGO)和常压渣油(AR)为原料,以自制LTB-2为催化剂, 在小型提升管装置中,研究了FCC轻汽油催化裂解增产丙烯的可行性以及与不同重质原料油组合进料对增产丙烯的协同效应.结果表明, LCG与回炼油、AR以及VGO组合进料回炼时,缩短了LCG的停留时间,在600℃、停留时间0.03s的反应条件下,干气产率明显降低,由9.94%~16.92%降到5.52%~6.33%,丙烯产率达到13.26%~17.91%,焦炭产率为0.69%~3.50%.  相似文献   

6.
烯烃催化裂解增产丙烯和乙烯的技术   总被引:1,自引:0,他引:1  
从小晶粒ZSM-5分子筛的合成、分子筛的修饰改性、烯烃裂解反应机理等方面介绍了上海石油化工研究院在烯烃催化裂解增产丙烯技术方面的研究工作.水热方法合成了晶粒大小在0.2~30μm之间3种规格的ZSM-5分子筛,对3种催化剂进行了表征,并考察了它们对烯烃裂解反应的催化活性.实验结果表明,小晶粒的分子筛具有较高的容碳能力和更好的催化稳定性;通过多种金属氧化物对ZSM-5分子筛进行复合组装、改性,大大提高了催化剂的水热稳定性,催化剂的再生周期达到3 100h,丙烯、乙烯单程收率分别达到38%和13%;反应机理研究表明,分子筛上的B酸中心是烯烃催化裂解反应的活性中心,碳四烯烃首先通过聚合反应生成C8烯烃,然后根据正碳离子、β键断裂机理发生断链反应.  相似文献   

7.
采用微反-色谱联合的方法,考察了反应温度、反应时间及催化剂活性对哈尔滨炼油厂流化催化裂化汽油催化裂解的产品分布、低碳烯烃(乙烯、丙烯和丁烯)产率和产品汽油族组成的影响。结果表明,在反应温度590℃、剂油比170、反应时间0.24s的实验条件下,FCC汽油经催化改质后,烯烃含量大幅度下降,可由改质前的41.6%降到改质后的13.4%,满足汽油新标准的要求,而异构烷烃和芳烃含量有较大幅度增加,分别由改质前的33.3%、13.3%增到40.4%、35.7%,使汽油在降低烯烃含量的同时,辛烷值不会降低,并且还会增加低碳烯烃的产率。此外,提高反应温度、延长反应时间、提高催化剂活性均有利于降低改质汽油的烯烃含量,增产低碳烯烃。  相似文献   

8.
9.
以焦化蜡油(CGO)和焦化汽油(CN)为原料,利用两段提升管催化裂解多产丙烯技术(TMP),在提升管催化裂化中试装置上考察TMP工艺条件下CGO的催化裂解性能,以及CGO催化裂解与CN改质的耦合反应性能.结果表明:TMP工艺对于CGO具有良好的适应性,两段反应综合转化率为87.80%;丙烯收率达到18.12%,选择性为...  相似文献   

10.
张金诚 《南炼科技》1998,5(8):28-33
介绍了催化裂解工艺的一般情况及其工业应用概况,并分析了这种工艺的经济效益。  相似文献   

11.
生产清洁汽油组分并增产丙烯的催化裂化工艺   总被引:22,自引:13,他引:22  
生产汽油组分满足欧Ⅲ排放标准,又能增产丙烯的流化催化裂化工艺--MIP-CGP,在多产异构烷烃的催化裂化工艺基础上被提出。依据生产方案要求,研究了工艺条件和开发专用催化剂CGP-1,并在中型试验装置上进行该工艺探索试验。中型试验结果表明,在该反应系统中,用大庆重质原料油,可以生产出烯烃体积分数低于18%的汽油,同时还能生产丙烯,产率达9.20%。  相似文献   

12.
分别考察了不同族组成的FCC汽油、FCC汽油窄馏分和几种模型化合物(1-己烯、3-甲基戊烷、正己烷和环己烷)催化裂化生成丙烯的性能。结果表明,高烯烃含量的FCC汽油催化裂化具有较高的转化率和丙烯产率。1-己烯、3-甲基戊烷、正己烷裂化环己烷生成丙烯的平均速率比1:2.0:2.5:32.5。在FCC汽油窄馏分催化裂化生成丙烯过程中,轻馏分裂化生成丙烯的贡献大于重馏分,因此回炼FCC汽油轻馏分制取丙烯是一种较好的选择。1-己烯的催化裂化反应中,主要发生裂化反应,占49%~69%,并且该比例随着反应温度的升高而增大;氢转移反应占15%~28%,并且随反应温度升高先增加后减小,在550℃时达到27.50%;聚合及环化反应分别占15%~28%,10%~15%。  相似文献   

13.
FCC汽油重馏分的催化裂化和热裂化产物组成的研究   总被引:5,自引:1,他引:4  
以FCC汽油重馏分为原料,分别在惰性石英砂及酸性催化剂上,反应温度为300 -700℃,在小型固定流化床上进行热裂化和催化裂化实验。结果表明,FCC汽油重馏分的热裂化起始反应温度为525℃左右。在催化裂化实验中,当反应温度为300-500℃时,FCC汽油重馏分催化裂化所得的干气100%由单分子裂化反应所产生;525℃时93%的干气由单分子裂化反应产生;550℃时63%的干气由单分子裂化反应产生;反应温度高于600℃时,干气几乎100%由热裂化反应所产生。单分子裂化反应所产生的干气组成中,按体积分数大小的顺序依次为C2H4、CH4、H2和C2H6。而热裂化反应所产生的干气组成中,CH4体积分数最高,约占50%,其次为H2,然后依次为C2H4、C2H6。当反应温度为300~600℃时,FCC汽油重馏分催化裂化所得的液化气80%~100%由催化裂化反应所产生,其主要组成为C3H4、iC4H10和C3H8,而热裂化液化气的主要组分为C3H6、iC4H8和C3H8。  相似文献   

14.
采用小型固定流化床装置研究甲醇作为催化裂化部分进料的反应过程,考察了加入甲醇对直馏汽油裂化反应的影响,比较了不同进料方式的反应过程,分析加入甲醇后的催化裂化反应规律。结果表明,甲醇与直馏汽油同时进料相对于单独的直馏汽油裂化,气体产率增加,并可维持低碳烯烃的选择性;产物汽油的正构烷烃、异构烷烃、环烷烃含量降低,烯烃含量略有增加,芳烃含量增加。对甲醇作为催化裂化部分进料过程的反应机理进行了初步探讨。  相似文献   

15.
利用小型固定流化床(FFB)装置,采用MMC-2催化剂,考察汽油族组成对汽油催化裂化反应过程中干气生成的影响。结果表明,汽油催化裂化反应过程中干气主要由催化裂化反应产生,热裂化反应产生的干气所占的比例很低。随着汽油原料中烯烃含量的增加,氢气、甲烷和乙烷的产率基本保持不变,乙烯的产率明显增加。烷烃引发反应时形成的五配位正碳离子的裂解反应生成氢气、甲烷、乙烷和乙烯等干气组分。烯烃质子化形成的三配位伯正碳离子可能直接发生β裂解生成乙烯。伯正碳离子直接发生β裂解的反应和先发生异构化生成仲正碳离子再发生β裂解反应的比值是固定的。  相似文献   

16.
在催化精馏塔中对FCC汽油催化精馏烷基化硫转移工艺进行考察,采用树脂催化剂,常压、连续操作,适宜的进料方式为下进料方式,回流质量比为2.0。2 016 h连续运行试验表明,催化剂性能稳定,塔顶汽油硫含量在30~40 μg/g之间,硫转移率平均值为91.14%。  相似文献   

17.
针对催化裂化汽油中烯烃含量高,国际市场对丙烯需求量大的现状,在扬州石化有限责任公司工业侧线装置上进行了FCC汽油烯烃裂化制丙烯工艺的工业试验。该工艺采用分子筛涂覆的规整结构催化剂,在自建的20 kg/h工业小试装置上,按照优化的工艺参数和工艺过程,促进FCC汽油中烯烃的选择性裂化,在降低汽油烯烃含量的同时,气相产物中三烯(乙烯、丙烯和丁烯)的选择性可大于80%,其中丙烯选择性可达到30%~40%。  相似文献   

18.
丁烯催化裂解制取丙烯及乙烯的研究   总被引:7,自引:2,他引:7  
探索了丁烯催化转化为丙烯、乙烯的反应特点。通过对正丁烯和异丁烯催化裂解反应结果的考察,发现丁烯主要通过二聚,再通过裂解反应生成丙烯和乙烯。丁烯转化主要在分子筛孔内进行,高硅中孔分子筛特殊的孔道结构和较低的酸密度,不利于氢转移反应而有利于将丁烯高选择性地转化为丙烯等目的产品。  相似文献   

19.
分析了典型焦化汽油烃类组成特点,重点研究焦化汽油催化裂解反应过程中反应转化率以及低碳烯烃的产率和选择性的主要影响因素。结果表明,催化裂解反应条件下焦化汽油转化率较低,提高反应温度是提高低碳烯烃产率的有效手段,但是目标产物的选择性变化不大;采用高选择性的催化剂可以在提高乙烯和丙烯产率的同时提高其选择性,并达到少产丁烯的目的。焦化汽油的正构烷烃转化程度低,尤其是C5~C7正构烷烃转化程度不足60%,是因其分子碳链短,所形成的正碳离子的β断裂反应不易发生所致。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号