首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
2.
Cyclin D1 overexpression, detected by standard immunohistochemistry, was correlated with other prognostic variables and its prognostic value was evaluated in a group of 148 invasive breast cancers with long-term follow-up. Overexpression of cyclin D1 (59% of cases) was negatively correlated (chi 2 test) with histological grade (P = 0.0001), mean nuclear area (P = 0.004), mean nuclear volume (P = 0.02), and mitotic activity (P = 0.03) and positively correlated with estrogen receptor (P = 0.0001). There was a strong correlation between cyclin D1 overexpression and histological type (P = 0.0001). Positive cyclin D1 staining was seen in 11 of 13 tubular carcinomas, 3 of 3 mucinous carcinomas, 4 of 4 invasive cribriform carcinomas, and 17 of 20 lobular carcinomas. Of 102 ductal cancers, 52 were positive, and all 6 medullary carcinomas were negative. There were no significant correlations with lymph node status, tumor size, or DNA ploidy. In survival analysis, cyclin D1 overexpression did not provide significant univariate or multivariate prognostic value. In conclusion, cyclin D1 is mainly overexpressed in the well differentiated and lobular types of invasive breast cancer and is strongly associated with estrogen receptor positivity. It is negatively correlated with the proliferation marker mitoses count and with the differentiation markers nuclear area and nuclear volume. However, cyclin D1 overexpression does not seem to have prognostic value in invasive breast cancer when no adjuvant treatment is given.  相似文献   

3.
The development of endocrine resistance in previously sensitive, estrogen receptor-positive breast cancers is a major limitation in the treatment of breast cancer. Because antiestrogens have a cell cycle-specific action on breast cancer cells and influence the expression and activity of several cell cycle-regulatory molecules, the development of aberrant cell cycle control mechanisms is a potential mechanism by which cells might develop resistance to antiestrogens. We postulated that overexpression of cyclin D1, which is a common feature of breast cancer, may confer antiestrogen resistance. We addressed this question in vitro by testing the ability of ectopic cyclin D1 overexpression to overcome the growth-inhibitory effects of tamoxifen and the pure steroidal antiestrogens, ICI 164384 and ICI 182780, in T-47D and MCF-7 human breast cancer cells. In cells stably transfected with a human cyclin D1 cDNA under the control of a metal-inducible metallothionein promoter, cyclin D1 expression was increased 2-4-fold following treatment with zinc. Despite the continued presence of antiestrogen, cyclin D1 induction resulted in the formation of active cyclin D1/Cdk4 complexes, concurrent hyperphosphorylation of the retinoblastoma protein, and entry into S phase of cells previously arrested in G1. Elevated cyclin D1 protein levels were first detected 3 h after treatment with zinc, and the proportion of cells in S phase began to increase 6 h later. The S-phase fraction increased 2-3-fold from 13 to 17% in cells treated with antiestrogen alone, to a peak of 33-38% 15 h after zinc treatment. Both the cyclin D1 protein level and the proportion of cells in S phase increased with increasing concentrations of zinc. We conclude that the ectopic overexpression of cyclin D1 reverses the growth-inhibitory effect of antiestrogens in estrogen receptor-positive breast cancer cells, providing a potential mechanism for clinical antiestrogen resistance.  相似文献   

4.
5.
Estrogen-induced progression through G1 phase of the cell cycle is preceded by increased expression of the G1-phase regulatory proteins c-Myc and cyclin D1. To investigate the potential contribution of these proteins to estrogen action, we derived clonal MCF-7 breast cancer cell lines in which c-Myc or cyclin D1 was expressed under the control of the metal-inducible metallothionein promoter. Inducible expression of either c-Myc or cyclin D1 was sufficient for S-phase entry in cells previously arrested in G1 phase by pretreatment with ICI 182780, a potent estrogen antagonist. c-Myc expression was not accompanied by increased cyclin D1 expression or Cdk4 activation, nor was cyclin D1 induction accompanied by increases in c-Myc. Expression of c-Myc or cyclin D1 was sufficient to activate cyclin E-Cdk2 by promoting the formation of high-molecular-weight complexes lacking the cyclin-dependent kinase inhibitor p21, as has been described, following estrogen treatment. Interestingly, this was accompanied by an association between active cyclin E-Cdk2 complexes and hyperphosphorylated p130, identifying a previously undefined role for p130 in estrogen action. These data provide evidence for distinct c-Myc and cyclin D1 pathways in estrogen-induced mitogenesis which converge on or prior to the formation of active cyclin E-Cdk2-p130 complexes and loss of inactive cyclin E-Cdk2-p21 complexes, indicating a physiologically relevant role for the cyclin E binding motifs shared by p130 and p21.  相似文献   

6.
7.
8.
9.
Cyclin D1 is frequently amplified and/or overexpressed in human breast cancer and several other types of cancer. To examine the role of cyclin D1 in normal mammary epithelial cells, in the present study we have overexpressed human cyclin D1 in the mouse mammary epithelial cell line HC11, using retrovirus-mediated transduction. We found that the cyclin D1 overexpresser clones displayed a decrease in saturation density, a decrease in anchorage-independent growth, an increased fraction of cells in the G(zero)-G1 phase, and increased expression of beta-casein, when compared to the control cells. The latter finding suggested that they were more differentiated. Furthermore, the cyclin D1 overexpressers displayed a marked increase in susceptibility to induction of apoptosis by serum withdrawal or by treatment with hydroxyurea or the protein kinase C inhibitors CGP 41251 and Ro31-8220. Thus, in some mammary epithelial cells, increased expression of cyclin D1 can inhibit growth, induce differentiation, and enhance apoptosis. These effects might be due, at least in part, to the fact that these derivatives displayed increased expression of the p27kip1 inhibitory protein.  相似文献   

10.
11.
The G1 cyclins, cyclin D1 and E, are rate limiting for progression through G1 phase of the cell cycle in breast epithelial cells and are oncogenic when expressed in the mammary epithelium of transgenic mice. These genes are frequently overexpressed in clinical breast cancer where overexpression appears to be associated with specific disease phenotypes, altered responsiveness to therapeutic intervention and patient survival. In order to investigate the functional correlates of cyclin D1 and cyclin E overexpression we employed a panel of normal, immortalized and neoplastic breast epithelial cell lines to examine the relationships between cyclin gene expression, cyclin-CDK complex formation and CDK activity. In agreement with earlier studies cyclin D1 and E expression varied over an approximately tenfold range among the 18 cell lines studied. There was no apparent relationship, however, between cyclin D1 expression and the in vitro activity of its major kinase partner, Cdk4, although MDA-MB-134 cells displayed the highest level of both cyclin D1 expression and Cdk4 activity. Similarly, there was no significant relationship between cyclin E expression and cyclin E-Cdk2 activity. Fractionation of whole cell lysates by gel filtration chromatography revealed that approximately 90% of the cyclin E protein was present in inactive complexes containing the CDK inhibitors p21 and p27. Much of the small fraction of active cyclin E protein was of very high apparent molecular mass, >400 kDa, suggesting that formation of these complexes is a more important determinant of cyclin E-Cdk2 activity than cyclin E abundance. These data suggest that properties of cyclins D1 and E in addition to their ability to activate Cdk4 and Cdk2 may contribute to the effects of overexpression on the breast cancer phenotype.  相似文献   

12.
The CCND1 gene, encoding the cell cycle regulatory protein cyclin D1, maps to chromosome 11q13, a locus that is amplified in about 13% of breast cancers. Because several studies have indicated a relationship between 11q13 amplification and markers of phenotype including estrogen receptor (ER) status, we tested the relationship between CCND1 and ER gene expression in 364 primary breast cancers using Northern blot analysis. Seventy-three % of samples were positive for ER mRNA, and cyclin D1 mRNA levels in the ER-positive group were significantly higher than those in the ER-negative group (P = 0.0001). When the samples were divided into quartiles of cyclin D1 expression, 58% of samples were ER positive in the lowest quartile and 87% in the highest quartile. The tumors expressing the highest levels of cyclin D1 (7%) were all ER positive. Furthermore, ER mRNA levels in the half with lower cyclin D1 mRNA were significantly less than in the half with higher cyclin D1 levels (P = 0.0001). Using simple regression analysis, there was a significant positive correlation between cyclin D1 and ER mRNA levels in the total population (P = 0.0001). This study demonstrates that cyclin D1 mRNA and ER mRNA are positively correlated in primary breast cancer, but the functional relationship between these genes remains to be elucidated.  相似文献   

13.
14.
We have demonstrated that extracellular signal-regulated kinases (ERKs) and cyclin D1 are required for bovine tracheal myocyte DNA synthesis. We hypothesized that catalytic activation by ERKs may regulate cyclin D1 expression in these cells. To test this hypothesis, we examined the effects of two inhibitors of ERKs and two reagents that increase the level of activated ERKs on cyclin D1 protein abundance and promoter activity. ERK activity was inhibited either by PD98059, a synthetic inhibitor of mitogen-activated protein kinase (MAPK)/ERK kinase (MEK), the upstream signaling intermediate required and sufficient for ERK activation, or by transient transfection with a dominant-negative mutant of MEK1 (MEK-2A). The level of activated ERKs was increased by transient transfection with either a constitutively active form of MEK1 (MEK-2E) or wild-type ERK2 (MAPKwt). Cyclin D1 expression was assessed either by immunoblot or cotransfection with the full-length cyclin D1 promoter subcloned into a luciferase reporter. We found that pretreatment of bovine tracheal myocytes with PD98059 significantly attenuated platelet- derived growth factor (PDGF)-induced cyclin D1 protein abundance. Furthermore, transfection with MEK-2A reduced PDGF-induced cyclin D1 promoter activity. Finally, transfection with either MEK-2E or MAPKwt induced cyclin D1 promoter activity in the absence of growth factor treatment. We conclude that catalytic activation of ERKs regulates cyclin D1 expression in airway smooth-muscle cells.  相似文献   

15.
16.
17.
The c-Raf-1 kinase is activated by different mitogenic stimuli and has been shown to be an important mediator of growth factor responses. Fusion of the catalytic domain of the c-Raf-1 kinase with the hormone binding domain of the estrogen receptor (deltaRaf-ER) provides a hormone-regulated form of oncogenic activated c-Raf-1. We have established NIH 3T3 cells stably expressing a c-Raf-1 deletion mutant-estrogen receptor fusion protein (c-Raf-1-BxB-ER) (N-BxB-ER cells). The transformed morphology of these cells is dependent on the presence of the estrogen antagonist 4-hydroxytamoxifen. Addition of 4-hydroxytamoxifen to N-BxB-ER cells arrested by density or serum starvation causes reentry of these cells into cell proliferation. Increases in the cell number are obvious by 24 h after activation of the oncogenic c-Raf-1 protein in confluent cells. The onset of proliferation in serum-starved cells is further delayed and takes about 48 h. In both cases, the proliferative response of the oncogenic c-Raf-1-induced cell proliferation is weaker than the one mediated by serum and does not lead to exponential growth. This is reflected in a markedly lower expression of the late-S- and G2/M-phase-specific cyclin B protein and a slightly lower expression of the cyclin A protein being induced at the G1/S transition. Oncogenic activation of c-Raf-1 induces the expression of the heparin binding epidermal growth factor. The Jnk1 kinase is putatively activated by the action of the autocrine growth factor. The kinetics of Jnk1 kinase activity is delayed and occurs by a time when we also detect DNA synthesis and the expression of the S-phase-specific cyclin A protein. This finding indicates that oncogenic activation of the c-Raf-1 protein can trigger the entry into the cell cycle without the action of the autocrine growth factor loop. The activation of the c-Raf-1-BxB-ER protein leads to an accumulation of high levels of cyclin D1 protein and a repression of the p27Kip1 cyclin-dependent kinase inhibitor under all culture conditions tested.  相似文献   

18.
19.
The steroid hormone progesterone regulates proliferation and differentiation in the mammary gland and uterus by cell cycle phase-specific actions. In breast cancer cells the predominant effect of synthetic progestins is long-term growth inhibition and arrest in G1 phase. Progestin-mediated growth arrest of T-47D breast cancer cells was preceded by inhibition of cyclin D1-Cdk4, cyclin D3-Cdk4, and cyclin E-Cdk2 kinase activities in vitro and reduced phosphorylation of pRB and p107. This was accompanied by decreases in the expression of cyclins D1, D3, and E, decreased abundance of cyclin D1- and cyclin D3-Cdk4 complexes, increased association of the cyclin-dependent kinase (CDK) inhibitor p27 with the remaining Cdk4 complexes, and changes in the molecular masses and compositions of cyclin E complexes. In control cells cyclin E eluted from Superdex 200 as two peaks of approximately 120 and approximately 200 kDa, with the 120-kDa peak displaying greater cyclin E-associated kinase activity. Following progestin treatment, almost all of the cyclin E was in the 200-kDa, low-activity form, which was associated with the CDK inhibitors p21 and p27; this change preceded the inhibition of cell cycle progression. These data suggest preferential formation of this higher-molecular-weight, CDK inhibitor-bound form and a reduced number of cyclin E-Cdk2 complexes as mechanisms for the decreased cyclin E-associated kinase activity following progestin treatment. Ectopic expression of cyclin D1 in progestin-inhibited cells led to the reappearance of the 120-kDa active form of cyclin E-Cdk2 preceding the resumption of cell cycle progression. Thus, decreased cyclin expression and consequent increased CDK inhibitor association are likely to mediate the decreases in CDK activity accompanying progestin-mediated growth inhibition.  相似文献   

20.
Amplification of chromosome 11q13 is frequently observed in human malignancies, including breast cancers. A candidate oncogene at this locus is the CCND1 gene, which encodes the cell cycle regulatory protein cyclin D1. Because published data on the relationship between 11q13 amplification and prognosis in breast cancer have been controversial, we investigated the clinical significance of CCND1 amplification and its association with established clinicopathological features of prognosis in 1014 primary breast cancer patients. Amplification of the CCND1 gene and the INT-2/FGF-3 gene, which also maps to 11q13, was 10% and 17%, respectively. There were no associations between CCND1 or INT-2 amplification and patient age, tumor size, tumor grade, axillary lymph node status, HER/neu amplification, MIB-1 monoclonal antibody to Ki67 antigen count, or p53 expression. CCND1 amplification was predominantly observed in hormone receptor-positive tumors; at a copy number >/=3, CCND1 amplification was significantly correlated with both estrogen receptor (ER; P = 0.036) and progesterone receptor (P = 0.012) positivity. After a median follow-up period of 66 months, CCND1 or INT-2 amplification was not associated with significant increases in relapse or death from breast cancer. However, in the node-negative and ER-positive subgroups, there was a trend for an increased relapse rate in patients with INT-2 or CCND1 amplification. Thus, in this study, assessment of CCND1 or INT-2 amplification at 11q13 by slot-blot hybridization was of little use in determining phenotype or disease outcome in the whole group of patients but had a potential role in identifying a subset of poor-prognosis patients within the node-negative or ER-positive, good-prognosis groups. Because the prevalence of CCND1 amplification is much lower than the reported prevalence of cyclin D1 overexpression, additional studies are required to determine the true prognostic significance of altered cyclin D1 expression in breast cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号