共查询到18条相似文献,搜索用时 78 毫秒
1.
2.
纳米β-NiOOH的固相合成及其性能 总被引:13,自引:1,他引:13
首次利用固相氧化法制备了 β NiOOH纳米粉体样品 ,经X射线衍射和透射电镜测试结果表明所得样品 β NiOOH粒子呈球形 ,粒径大小在 2 0~ 40nm之间。热重与差热分析结果表明当温度超过 10 0℃ ,样品开始不可逆地分解为NiO。运用恒流充放电、循环伏安以及Tafel极化等电化学测试对样品的电化学性能进行了初步研究。结果表明 :β NiOOH的交换电流密度高于 β Ni(OH) 2 的交换电流密度约一个数量级 ,具有较好的电极可逆性、较高的质量比容量以及优良的容量保持率 ,适于作为Zn/NiOOH类型镍电池的正极活性材料 相似文献
3.
4.
5.
6.
NaBiO3的固相合成及其对二氧化锰电化学性质的影响 总被引:2,自引:0,他引:2
采用固相氧化反应,制备了高纯度的NaBiO3,用于掺杂改性二氧化锰电极。通过恒流放电实验和循环伏安测试,研究了掺杂碱性二氧化锰电极和掺杂碱锰电池的电化学性能,初步探讨了反应机理。实验结果表明,掺杂量在1~10 % 之间对MnO2电极有很好的改性作用。NaBiO3掺杂的MnO2电极比纯MnO2电极的放电电压升高100~150 mV,放电容量提高72%以上。NaBiO3掺杂的MnO2电极比掺杂Bi2O3电极有着更高的放电电压和放电容量。 相似文献
7.
化学改性MnO2的制备及可充性 总被引:1,自引:0,他引:1
制备可充锌锰电池的关键技术之一是提高MnO2的可逆性。采用化学沉淀氧化法制备改性MnO2。研究了锰盐、掺杂物质、氧化剂、温度等对MnO2可逆性的影响。采用模拟电池及微电极技术研究MnO2的充放电性能,结合XRD、SEM检测改性MnO2的晶形和形貌。实验结果表明,当以Bi(NO3)3为掺杂物质时,制备改性MnO2的优化工艺条件是:n(Mn)/n(Bi)(摩尔比)为6~10,氧化剂用NaClO,锰盐可用Mn(NO3)2或MnSO4,25 ℃,反应时间10~15 h。所得改性MnO2呈疏松微晶粒状,是以β-MnOOH为主的β-MnOOH与β-BiOOH的混合晶相。该样品经第10次循环充放电后,其放电容量为初始放电容量的121%,10次累积放电容量是电解MnO2(EMD)的3倍。表明掺Bi3+对改善MnO2的可逆性和提高放电容量有重要作用。 相似文献
8.
为解决碱性锌锰电池体系存在的电解液易泄露、加工封闭难等问题,利用溶剂浇铸法制备了PVA-KOH-H2O碱性固态聚合物电解质(ASPE),通过XRD、循环伏安及交流阻抗测试对ASPE样品进行表征.结果表明:ASPE具有良好的导电性(室温电导率达10-2S/cm)及较宽的电化学稳定窗口(相对于不锈钢电极,其电压稳定窗口为2.0 V).Zn|ASPE|MnO2模拟电池以1 mA恒电流放电至0.9 V,放电容量达210 mAh/g. 相似文献
9.
10.
11.
12.
球磨促进高温固相反应合成尖晶石相LiMn2O4 总被引:6,自引:0,他引:6
利用球磨促进高温固相反应方法进行了LiMn2 O4的合成 ,研究了球磨时间对原料颗粒大小和反应温度的影响 ,并利用热重分析 (TG)、扫描电镜 (SEM )、X射线衍射 (XRD)等手段对反应过程及产物形貌和物相结构进行了分析。实验结果表明球磨大大地降低了LiMn2 O4的合成温度 ,缩短了合成时间 ,并且晶粒的粒径要比没球磨的样品小。电化学测试结果表明用此种方法合成的尖晶石结构LiMn2 O4其初始放电容量能达到 1 2 0mAh/g ,而且大电流充放电性能也得到了改善和提高 相似文献
13.
14.
低热固相反应法是近年来发展起来的一种合成新型固体材料的方法,该方法具有节能、产率高、不需要溶剂、无污染、反应时间短、室温反应且合成的材料稳定性好等优点。低热固相反应法合成电池活性材料引起了人们的关注。综述了低热固相反应法合成电池正极材料MnO2、Ni(OH)2、LiCoO2、LiMn2O4、掺杂锂钴氧化物的研究进展,探讨了低热固相反应法合成电池正极材料的机理。 相似文献
15.
利用带八极杆碰撞/反应池(ORS)和屏蔽炬技术的电感耦合等离子体质谱(ICP-MS)分析,测定碱性锌锰电池用锌粉中Mg、Cr、Mn、Fe、Co、Ni、Cu、As、Mo、Cd、Sb和Hg等12种杂质元素的含量.向ORS中引入氢气和氦气,消除多原子离子的干扰,以50 μg/L的Sc、Ge、In及Tb为内标元素,校正基体干扰... 相似文献
16.
17.
采用球磨流变相辅助高温固相反应法制备0.5Li_2MnO_3-0.5LiMn_(1/3)Ni_(1/3)Co_(1/3)O_2材料,利用恒流充放电、循环伏安、SEM和X射线能谱(EDS)等技术对产物进行分析。材料属于R-3m空间群的α-NaFeO_2型层状结构,颗粒结晶完整,95%的颗粒粒径在18.39μm以内。在4.8~2.0 V充放电,材料的0.05 C首次放电比容量为250.9 mAh/g,库仑效率为70.1%,并在首次充电过程中完成结构重整;0.20 C首次放电比容量为214.4 mAh/g,2.00 C放电比容量为136.2 mAh/g。 相似文献