首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The mechanical properties, i.e., Young's modulus, fracture toughness, and flexural strength, of SiC-platelet/Al2O3 composites with two different platelet sizes were studied. Both Young's modulus and the fracture toughness of composites using small platelets (12 μm) increased with increasing SiC volume fraction. Maximum values for toughness and Young's modulus of 7.1 MPa·m1/2 and 421 GPa were obtained for composites containing 30 vol% platelets. Composites fabricated using larger platelets (24 μm), however, showed spontaneous microcracking at SiC volume fractions of ≤0.15. The presence of microcracks decreased Young's modulus and the fracture toughness substantially. Two types of radial microcracks were identified by optical microscopy and found to be consistent with a residual stress analysis. Anisotropy in fracture toughness was identified with a crack length indentation technique. Cracks propagating in a plane parallel to platelet faces experienced the least resistance, which was the the lowest toughness plane in platelet composites with preferred orientation. Enhanced fracture toughness was found in the plane parallel to the hot-pressing direction, but no anisotropy in toughness was observed in this plane. The flexural strength of alumina showed a decrease from 610 to 480 MPa for a 30 vol% composite and was attributed to the presence of the platelets.  相似文献   

2.
A process based on liquid-phase sintering and subsequent annealing for grain growth is presented to obtain in situ -toughened SiC-30 wt% TiC composites. Its microstructures consist of uniformly distributed elongated α-SiC grains, matrixlike TiC grains, and yttrium aluminum garnet (YAG) as a grain boundary phase. The composites were fabricated from β-SiC and TiC powders with the liquid forming additives of A12O3 and Y2O3 by hot pressing. During the subsequent heat treatment, the β→α phase transformation of SiC led to the in situ growth of elongated α-SiC grains. The fracture toughness of the SiC-30 wt% TiC composites after 6-h annealing was 6.9 MPa-m1/2, approximately 60% higher than that of as-hot-pressed composites (4.4 MPa-m1/2). Bridging and crack deflection by the elongated α-SiC grains appear to account for the increased toughness of this new class of composites.  相似文献   

3.
Fine-grained (<1 μm) silicon carbide ceramics with high strength were obtained by using ultrafine (∼90 nm) β-SiC starting powders and a seeding technique for microstructural control. The microstructures of the as-hot-pressed and annealed ceramics without α-SiC seeds consisted of fine, uniform, and equiaxed grains. In contrast, the annealed material with seeds had a uniform, anisotropic microstructure consisting of elongated grains, owing to the overgrowth of β-phase on α-seeds. The strength, the Weibull modulus, and the fracture toughness of fine-grained SiC ceramics increased with increasing grain size up to ∼1 μm. Such results suggested that a small amount of grain growth in the fine grained region (<1 μm) was beneficial for mechanical properties. The flexural strength and the fracture toughness of the annealed seeded materials were 835 MPa and 4.3 MPa·m1/2, respectively.  相似文献   

4.
The room- and high-temperature mechanical properties or a high-strength, sintered silicon carbide were evaluated Room-temperature strength was measured in four-point bending. The room-temperature fracture toughness was determined using a precracked single-edge-notched beam (SENB) bridge indentation technique. The high-temperature behavior was evaluated using the stepped-temperature stress rupture (STSR) procedure. Both the room- and the high-temperature behavior are superior to those of previously tested commercial sintered α and β silicon carbides.  相似文献   

5.
Combustion Synthesis of Silicon Nitride-Silicon Carbide Composites   总被引:2,自引:0,他引:2  
The feasibility of synthesizing silicon nitride-silicon carbide composites by self-propagating high-temperature reactions is demonstrated. Various mixtures of silicon, silicon nitride, and carbon powders were ignited under a nitrogen pressure of 30 atm (∼ 3 MPa), to produce a wide composition range of Si3N4-SiC powder products. Products containing up to 17 vol% of SiC, after being attrition milled, could be hot-pressed to full density under 1700°C, 3000 psi (∼ 21 MPa) with 4 wt% of Y2O3. The microhardness and fracture toughness of these composites were superior to those of the pure β-Si3N4 matrix material and compared very well with the properties of "traditionally" prepared composites.  相似文献   

6.
The effects of β-SiC whisker addition on the microstructural evolution and fracture toughness ( K IC) of hot-pressed SiC were investigated. Most of the whiskers added disappeared during the densifcation process by transformation into the α-phase. The remaining whiskers acted as nuclei for grain growth, resulting in the formation of large tabular grains around the whiskers. The tabular grains around the whiskers were believed to be formed because of the extreme anisotropy of the interfacial energy between α- and β-SiC. The K IC of the material was improved significantly by the whisker addition. The increase in the K IC was attributed to crack bridging followed by grain pullout as a result of the formation of tabular grains in a fine matrix.  相似文献   

7.
The fracture toughness of a dense, sintered commercial α-silicon carbide was determined for temperatures from 20° to 1400°C using both straight- and chevron-notched test specimens and also controlled-surface-microflaw specimens, all in three-point bending. The flexural strengths were also measured for the same range of temperatures and the trend is compared with that of the toughness. Measurements from this study are discussed and also compared with other results in the literature. Analysis reveals the importance of contrasting sharp crack and blunt crack techniques and also the need for addressing the microhardness indentation method separately. It is concluded that the fracture toughness of this silicon carbide is about 3 MPa · m½ and that the crack growth resistance is characterized by a flat R -curve behavior, both of which are independent of temperature from 20° to 1400°C.  相似文献   

8.
Luk Bamboo had been converted into biomorphic composites containing high-purity cristobalite-SiO2 and β-silicon carbide (SiC) nanowires after sintering at 1200° and 1400°C, respectively. The fabrication process was simple, in which no catalyst was needed and the sintering temperature was low. The procedure included pyrolysis of biotemplates, infiltration of a Si-containing reactant, and sintering. Both the SiO2 and SiC nanowires were grown by a two-stage growth mechanism, in which the impurities from raw bamboo acted as catalysts. We successfully demonstrated that inexpensive Luk bamboo could provide a breakthrough, cost-effective, and eco-friendly route for self-assembling one-dimensional nano-structures in highly porous biomorphic materials.  相似文献   

9.
Ceramics typically have very high hardness, but suffer from poor toughness. Here, we use graphene to enhance the toughness of bulk boron carbide ceramics. The reduced graphene oxide (rGO) platelets are homogenously dispersed with boron carbide particles after sintering at 1350°C, under high pressure of 4.5 GPa with a multi‐anvil apparatus. Fracture toughness of the composites is increased ~131% (from ~3.79 to ~8.76 MPa·m1/2) at 1.5 vol% rGO platelets as a result of a toughing effect of graphene along with a little sacrificing of the hardness and elastic modulus, compared with those of pure boron carbide. The remarkably enhanced fracture toughness in the boron carbide ceramics is associated with graphene sheets crack bridging and graphene interface sliding effect. This study holds much significance for the understanding and development of high‐performance graphene reinforcing ceramics.  相似文献   

10.
Sintered α-silicon carbide and siliconized silicon carbide were exposed to combustion off-gas containing sodium silicate vapors and particulates in a combustion test facility for 24 to 373 h at 900° to 1050°C. Degradation was evaluated by measuring dimensional changes, by measuring loss in strength due to changes in flaw population, and by evaluating surface corrosion morphology. It is suggested that passive oxidation and dissolution of the silica oxidation scale play an important role in the corrosion process. These mechanisms were enhanced by the continuous removal and replenishment of corrosive material by the high-velocity gas. These degradation phenomena caused surface pitting and an approximately 50% reduction in strength for both materials after long-term exposure (>100 h). Morphological evaluation suggested that the grain boundaries in the α-silicon carbide were oxidized more rapidly than the grains, while for the case of the siliconized silicon carbide the silicon phase was oxidized rapidly along with preferential oxidation of the silicon carbide grains parallel to the {0001} plains.  相似文献   

11.
The α→β reverse transformation in SiC is observed in Si3N4-particulate-reinforced-SiC composites made from as-received α-SiC and α-Si3N4 powders. However, the transformation does not occur to any great extent in composites made from deoxidized Si3N4-SiC powder compacts. Detailed transmission electron microscopy shows that most interfaces are covered with an ∼10 Å thick amorphous intergranular film in the composites made from as-received powders, whereas most interfaces are free of such films in the composites made from deoxidized powder compacts. These observations indicate that the α→β reverse transformation in SiC is encouraged by a nitrogen-containing liquid phase that occurs at high temperature in the composites made from the as-received powders. A mechanism is proposed to account for the experimental observations.  相似文献   

12.
Si3N4 matrix composites reinforced by SiC whiskers, SiC particles, or both were fabricated using the hot-pressing technique. The mechanical properties of the composites containing various amounts of these SiC reinforcing materials and different sizes of SiC particles were investigated. Fracture toughness of the composites was significantly improved by introducing SiC whiskers and particles together, compared with that obtained by adding SiC whiskers or SiC particles alone. On increasing the size of the added SiC particles, the fracture toughness of the composites reinforced by both whiskers and particles was increased. Their fracture toughness also showed a strong dependence on the amount of SiC particles (average size 40 μm) and was a maximum at the particle content of 10 vol%. The maximum fracture toughness of these composites was 10.5 MPa·m1/2 and the flexural strength was 550 MPa after addition of 20 vol% of SiC whiskers and 10 vol% of SiC particles having an average particle size of 40 μm. These mechanical properties were almost constant from room temperature to temperatures around 1000°C. Fracture surface observations revealed that the reinforcing mechanisms acting in these composites were crack deflection and crack branching by SiC particles and pullout of SiC whiskers.  相似文献   

13.
Both silicon carbide and aluminum silicon carbide have simultaneously been obtained directly from naturally occurring aluminosilicate by carbothermal reduction for the first time. A precursor of a montmorillonite–polyacrylonitrile (PAN) intercalation compound was heated at 1700°C in Ar. For comparison, montmorillonite–carbon mixtures were similarly heated. α-SiC, β-SiC, and Al4Si2C5 formed from the montmorillonite–PAN intercalation compound. Mainly α-Al4SiC4 was obtained with ternary carbides from the montmorillonite–carbon mixtures in addition to a large amount of β-SiC. Hence, aluminum silicon carbide formation was affected by the mixing condition of the starting materials.  相似文献   

14.
In Situ-Toughened Silicon Carbide   总被引:10,自引:0,他引:10  
A new processing strategy based on atmospheric pressure sintering is presented for obtaining dense SiC-based materials with microstructures consisting of (i) uniformly distributed elongate-shaped α-SiC grains and (ii) relatively high amounts (20 vol%) of second-phase yttrium aluminum garnet (YAG). This strategy entails the sintering of β-SiC powder doped with α-SiC, Al2O3, and Y2O3. The Al2O3 and Y2O3 aid in the liquid-phase sintering of SiC and form in situ YAG, which has a significant thermal expansion mismatch with SiC. During a subsequent grain-growth heat treatment, it is postulated that the α-SiC "seeds" assist in controlling in situ growth of the elongated α-SiC grains. The fracture pattern in the in situ -toughened SiC is intergranular with evidence of copious crack-wake bridging, akin to toughened Si3N4 ceramics. The elongate nature of the α-SiC grains, together with the high thermal-residual stresses in the microstructure, enhance the observed crack-wake bridging. This bridging accounts for a measured twofold increase in the indentation toughness of this new class of in situ -toughened SiC relative to a commercial SiC.  相似文献   

15.
SiC-monofilament-reinforced SiC or Si3N4 matrix composites were fabricated by hot-pressing, and their mechanical properties and effects of filaments and filament coating layers were studied. Relationships between frictional stress of filament/matrix interface and fracture toughness of SiC monofilament/Si3N4 matrix composites were also investigated. As a result, it was confirmed experimentally that in the case of composites fractured with filament pullout, the fracture toughness increased as the frictional stress increased. On the other hand, when frictional stress was too large (>about 80 MPa) for the filament to be pulled out, fracture toughnesses of the composites were almost the same and not so much improved over that of Si3N4 monolithic ceramics. The filament coating layers were found to have a significant effect on the frictional stress of the SiC monofilament/Si3N4 matrix interface and consequently the fracture toughness of the composites. Also the crack propagation behavior in the SiC monofilament/Si3N4 matrix composites was observed during flexural loading and cyclic loading tests by an in situ observation apparatus consisting of an SEM and a bending machine. The filament effect which obstructed crack propagation was clearly observed. Fatigue crack growth was not detected after 300 cyclic load applications.  相似文献   

16.
By using α- and β-SiC starting powders with similar particle sizes, the effects of initial α-phase content on the microstructure and the mechanical properties of the liquid-phase-sintered and subsequently annealed materials were investigated. The microstructures developed were analyzed by image analysis. When β-SiC powder was used, the grains became elongated. The average diameter decreased with increasing α-SiC content and the aspect ratio showed a maximum at 10%α-SiC and decreased with increasing α-SiC content in the starting powder. Such results suggest that microstructure can be controlled by changing α-phase content in starting powders. The strength increased with increasing α-SiC content in the starting powder while the fracture toughness decreased with increasing α-SiC content. There may be a trade-off in improving both the strength and toughness in SiC ceramics sintered with oxide additives.  相似文献   

17.
Catalytic Effects of Metals on Direct Nitridation of Silicon   总被引:3,自引:0,他引:3  
Catalytic effects were investigated on the direct nitridation of silicon granules, impregnated with 0.125–2.0% by mass of calcium, yttrium, iron, copper, silver, chromium, or tungsten, in a stream of nitrogen with 10% hydrogen, using a tubular flow reactor operated at temperatures ranging from 1200° to 1390°C. Calcium and yttrium suppressed the formation of β-silicon nitride while iron enhanced the formation of β-silicon nitride over the temperature range investigated. An addition of 0.125% calcium resulted in about 99% overall conversion with 100%α-phase and a 2.0% yttrium addition yielded an overall conversion over 98% with an α-phase content above 97%. Copper promoted not only the nitridation but the formation of α-silicon nitride at 1200°C, but enhanced the β-phase formation at higher temperatures. The role of liquid phases on the formation of α-/β-silicon nitride was also discussed based on the nitridation of silicon impregnated with copper, calcium, silver, chromium, and tungsten.  相似文献   

18.
Quantitative texture analysis, which included calculation of the orientation distribution function, was used to demonstrate textures in hot-pressed and subsequently annealed silicon carbide (SiC). The results indicated that the hot pressing and annealing could produce strong textures in SiC. Grain rotation during hot pressing and preferred grain growth of plate-shaped α-SiC grains during annealing both apparently contributed to texture development in the SiC materials. The {111} pole figure in hot-pressed material (mostly ß-SiC) and the (004) pole figure in annealed material (mostly α-SiC) were consistent with the microstructural observations. The fracture toughness of hot-pressed and annealed material measured parallel to the hot-pressing direction (5.7 MPam1/2) was higher than that measured perpendicular to the hot-pressing direction (4.4 MPam1/2), because of the texture and the microstructural anisotropy.  相似文献   

19.
SiC-platelet-reinforced Al2O3-matrix composites were made by three different forming techniques, i.e., slip casting, tape casting, and dry compaction of a granulated powder. All samples were densified with hot pressing at 1650°C and 25 MPa for 0.5 h. The orientation of SiC platelets in the composites was studied before and after hot pressing using optical microscopy and a pole figure X-ray device. X-ray diffraction of the (0006) plane of silicon carbide (6H) was used to analyze the degree of preferred orientation. It was found that both tape casting and die pressing could give rise to preferred orientation in green bodies with the faces of SiC platelets parallel to the tape faces or perpendicular to the pressing direction, respectively. The preferred orientation in die-pressed samples also showed an increase with the increase of the compaction stress; however, this reached a saturation level at about 70 MPa in a similar way to the green density. Samples formed by slip casting gave a platelet orientation close to a random one in the green body. After hot pressing, preferred orientation was observed in both slip-cast and tape-cast samples with the faces of SiC platelets perpendicular to the direction of hot pressing. The effect of platelet size on the orientation was also investigated. The preferred orientation in platelet composites was found to yield higher toughness than the random state.  相似文献   

20.
Synthesis of Silicon Carbide from Rice Husk in a Packed Bed Arc Reactor   总被引:1,自引:0,他引:1  
Silicon carbide in the form of powder was prepared from boiler burnt rice husk in a new type of packed bed arc reactor where the raw materials were processed in briquette form. X-ray diffraction analysis identified the presence of both β and α SiC. Microstructural characterization revealed the presence of triangular, truncated triangular, and hexagonal crystallites, along with platelets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号