首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Ceramics International》2016,42(7):8636-8644
Effects of oxidation cross-linking and sintering additives (TiN, B) on the microstructure formation and heat-resistant performance of freestanding SiC(Ti, B) films synthesized from Ti, B-containing polycarbosilane (TiB-PCS) precursor were investigated. TiB-PCS green films were first cross-linked for 1 h, 2 h, 3 h and 4 h, respectively, and then pre-sintered at 950 °C. Finally, they were sintered at 1800 °C to complete the conversion from organic films to inorganic SiC(Ti, B) films. The results reveal that curing time has a great impact on the uniformity and density of SiC(Ti, B) films. TiB-PCS films cured for 3 h yield the best quality SiC(Ti, B) films, which are composed of β-SiC crystals, C clusters, α-SiC nano-crystals, a small amount of TiB2 and B4C. TiB2 and B4C are both steady phases which can inhibit abnormal growth of β-SiC, effectively reduce sintering temperature and help consume excess C from decomposition of amorphous SiOxCy. After high temperature annealing at 1500 °C, 1600 °C and 1700 °C in argon, SiC(Ti, B) films still keep excellent mechanical properties, which makes them attractive candidate materials for microelectromechanical systems (MEMS) used at ultra-high temperatures (exceeding 1500 °C).  相似文献   

2.
In this study, porous SiC ceramics with interconnected huge plate-like grains were fabricated from oxidized β-SiC powder with 1 wt% B4C. When the β–α SiC phase transformation occurred at 2100 °C, rapid grain growth of α-SiC consumed the unstable β-SiC matrix resulting in an interconnected network structure with huge plate-like grains. The oxidation of β-SiC powder and the addition of B4C are necessary conditions for rapid grain growth. The observed results are discussed based on thermodynamic considerations. The measured porosity of the specimens sintered at 2100 °C for 30 min was 47% and the mean pore size was 6–7 μm. The strength of the sintered specimen was 45 ± 5 MPa.  相似文献   

3.
ZrB2–SiC composites were prepared by spark plasma sintering (SPS) at temperatures of 1800–2100 °C for 180–300 s under a pressure of 20 MPa and at higher temperatures of above 2100 °C without a holding time under 10 MPa. Densification, microstructure and mechanical properties of ZrB2–SiC composites were investigated. Fully dense ZrB2–SiC composites containing 20–60 mass% SiC with a relative density of more than 99% were obtained at 2000 and 2100 °C for 180 s. Below 2120 °C, microstructures consisted of equiaxed ZrB2 grains with a size of 2–5 μm and α-SiC grains with a size of 2–4 μm. Morphological change from equiaxed to elongated α-SiC grains was observed at higher temperatures. Vickers hardness of ZrB2–SiC composites increased with increasing sintering temperature and SiC content up to 60 mass%, and ZrB2–SiC composite containing 60 mass% SiC sintered at 2100 °C for 180 s had the highest value of 26.8 GPa. The highest fracture toughness was observed for ZrB2–SiC composites containing 50 mass% SiC independent of sintering temperatures.  相似文献   

4.
A reaction bonding technique was used for the preparation of cordierite-bonded porous SiC ceramics in air from α-SiC, α-Al2O3 and MgO, using graphite as the pore-forming agent. Graphite was burned out to produce pores and the surface of SiC was oxidized to SiO2 at high temperature. With further increasing the temperature, SiO2 reacted with α-Al2O3 and MgO to form cordierite. SiC particles were bonded by the cordierite and oxidation-derived SiO2. The reaction bonding characteristics, phase composition, open porosity, pore size distribution and mechanical strength as well as microstructure of porous SiC ceramics were investigated. The pore size and porosity were strongly dependent, respectively, on graphite particle size and volume fraction. The porous SiC ceramics sintered at 1350 °C for 2 h exhibited excellent combination properties, the flexural strength of 26.0 MPa was achieved at an open porosity of 44.51%.  相似文献   

5.
The effects of oxygen pick-up and Al atoms on the formation and microstructure of freestanding SiC(Al) films by melt spinning of polyaluminocarbosilane (PACS) precursor were studied. PACS green films were cross-linked for 1 h, 2 h, 3 h and 4 h, pre-pyrolyzed at 900 °C, respectively. They were continuously pyrolyzed at 1800 °C to convert initial PACS into SiC(Al) ceramic films. Results reveal that the strict control of oxygen content during the oxidation curing is essential to produce near-stoichiometric SiC(Al) films. The microstructure of the dense films is a mixture of β-SiC crystals, α-SiC nano-crystals, C clusters and a small amount of Al4O4C and Al4SiC4. Al atoms which play important roles as both sintering aids and grain growth inhibitor are well distributed in the films due to the presence of stable composition and structure. SiC(Al) films with excellent mechanical properties would be attractive candidate materials for MEMS in harsh environments.  相似文献   

6.
The influence of silicon carbide (SiC) particle size on the microstructure and mechanical properties of zirconium diboride–silicon carbide (ZrB2–SiC) ceramics was investigated. ZrB2-based ceramics containing 30 vol.% SiC particles were prepared from four different α-SiC precursor powders with average particle sizes ranging from 0.45 to 10 μm. Examination of the dense ceramics showed that smaller starting SiC particle sizes led to improved densification, finer grain sizes, and higher strength. For example, ceramics prepared from SiC with the particle size of 10 μm had a strength of 389 MPa, but the strength increased to 909 MPa for ceramics prepared from SiC with a starting particle size of 0.45 μm. Analysis indicates that SiC particle size controls the strength of ZrB2–SiC.  相似文献   

7.
The electrical response of a liquid-phase-sintered (LPS) α-SiC with 10 wt.% Y3Al5O12 (YAG) additives was studied from near-ambient temperature up to 800 °C by complex impedance spectroscopy. The electrical conductivity of this LPS SiC ceramic was found to increase with increasing temperature, which was attributed to the semiconductor nature of the SiC grains. It was concluded that the contribution of the SiC grains to the electrical conductivity of the LPS SiC ceramic at moderate temperatures (<450 °C) is a somewhat greater than that of the YAG phase. In contrast, at higher temperatures the SiC grains control the electrical conductivity of the LPS SiC ceramic. It was also found that there are two activation energies for the electrical conduction process of the α-SiC grains. These are 0.19 eV at temperatures lower than ∼400 °C and 2.96 eV at temperatures higher than ∼500 °C. The existence of two temperature-dependence conduction regimes reflects the core–shell substructure that develops within the SiC grains during the liquid-phase sintering, where the core is pure SiC (intrinsic semiconductor) and the shell is mainly Al-doped SiC (extrinsic semiconductor).  相似文献   

8.
Raman spectroscopy and neutron diffraction were used to study the stresses generated in zirconium diboride–silicon carbide (ZrB2–SiC) ceramics. Dense, hot pressed samples were prepared from ZrB2 containing 30 vol% α-SiC particles. Raman patterns were acquired from the dispersed SiC particulate phase within the composite and stress values were calculated to be 810 MPa. Neutron diffraction patterns were acquired for the ZrB2–SiC composite, as well as pure ZrB2 and SiC powders during cooling from ~1800 °C to room temperature. A residual stress of 775 MPa was calculated as a function of temperature by comparing the lattice parameter values for ZrB2 and SiC within the composite to those of the individual powders. The temperature at which stresses began to accumulate on cooling was found to be ~1400 °C based on observing the deviation in lattice parameters between pure powder samples and those of the composite.  相似文献   

9.
Pine (Pinus silvestris) wood samples were dried and impregnated with a SiO2 sol from a sol–gel process. The impregnation involved a two step process in a custom-made apparatus. Impregnated samples were dried and pyrolised at 500 °C under an oxygen-free atmosphere. SiC synthesis was performed in a high-temperature furnace in an argon atmosphere at a temperature of 1600 °C for 2, 4 and 8 h. The samples were investigated with X-ray diffraction (XRD) and field emission scanning electron microscopy (FE-SEM). The changes in the SiC synthesis time at the maximum temperature lead to changes in the microstructure and crystalline phase composition. An increase in the synthesis time opens up the possibility to produce mainly α-SiC crystalline modification containing porous SiC ceramics.  相似文献   

10.
Bio-carbon template (charcoal) was prepared by carbonizing pine wood at 1200 °C under vacuum, and was impregnated with phenolic resin/SiO2 sol mixture by vacuum/pressure processing. Porous SiC ceramics with hybrid pore structure, a combination of tubular pores and network SiC struts in the tubular pores, were fabricated via sol–gel conversion, carbonization and carbothermal reduction reaction at elevated temperatures in Ar atmosphere. X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR) and scanning electron microscope (SEM) were employed to characterize the phase identification and microstructural changes during the C/SiO2 composites-to-porous SiC ceramic conversion. Experimental results show that the density of C/SiO2 composite increases with the number of impregnation procedure, and increases from 0.32 g cm−3 of pine-derived charcoal to 1.5 g cm−3 of C/SiO2 composite after the sixth impregnation. The conversion degree of charcoal to porous SiC ceramic increases as reaction time is lengthened. The resulting SiC ceramic consists of β-SiC with a small amount of α-SiC. The conversion from pine charcoal to porous SiC ceramic with hybrid pore structure improves bending strength from 16.4 to 42.2 MPa, and decreases porosity from 76.1% to 48.3%.  相似文献   

11.
Highly resistive SiC ceramics were prepared by hot pressing α-SiC powders with Al2O3-Y2O3 additives with a 4:1 molar ratio. X-ray diffraction patterns, Raman spectra, electron probe microanalysis (EMPA), and scanning electron microscopy (SEM) images revealed that the bulk SiC ceramics consisted mostly of micron-sized 6H-SiC grains along with Y2O3 and Si clusters. As the additive content increased from 1 to 10 vol%, the electrical resistivity of the ceramics increased from 3.0 × 106 to 1.3 × 108 Ω cm at room temperature. Such high resistivity is ascribed to Al2O3 in which Al impurities substituting Si site act as deep acceptors for trapping carriers. More resistive α-SiC ceramics were produced by adding AlN instead of Al2O3. The highest resistivity (1.3 × 1010 Ω cm) was achieved by employing 3 vol% AlN-Y3Al5O12 (yttrium aluminum garnet, YAG) as an additive.  相似文献   

12.
《Ceramics International》2017,43(12):8982-8988
Damage of structural components of hypersonic vehicles by atmospheric particles demands thorough understanding on their wear behavior. In the present work, dense ZrB2-SiC (10, 20, and 30 vol%) composites are prepared by spark plasma sintering at 55 MPa in two stages: 1400 °C for 6 min followed by 1600 °C for 2 min. With increase in SiC content, microstructures of sintered composites reveal strongly bonded ZrB2 grains with SiC particles. A combination of maximum hardness of 23 GPa, elastic modulus of 398 GPa and fracture toughness of 5.4 MPa m1/2 are obtained for the composite containing 30 vol% SiC particles. It is found that cracks are bridged or deflected by SiC particles in the composites. When the composites are subjected to SiC particle erosion at 800 °C, a 14% decrease in erosion rate is obtained with increase in SiC content from 10 to 30 vol%. The formation of large extent of boro-silicate rich viscous surface on eroded surfaces is attributed to reduced fracture or removal of ZrB2 grains of the composites with increased SiC content.  相似文献   

13.
This study reports the pressureless sintering of cubic phase silicon carbide nanoparticles (β-SiC). Green blended compounds made of SiC nano-sized powder, a fugitive binder and a sintering agent (boron carbide, B4C), have been prepared. The binder is removed at low temperature (e.g. 800 °C) and the pressureless sintering studied between 1900 and 2100 °C. The nearly theoretical density (98% relative density) was obtained after 30 min at 2100 °C.The structural and microstructural evolutions during the heat treatment were characterised. The high temperatures needed for the sintering result in the β-SiC to α-SiC transformation which is revealed by the change of the composite microstructure. From 1900 °C, dense samples are composed of β-SiC grains surrounding α-SiC platelets in a well-defined orientation.TEM investigations and calculation of the activation energy of the sintering provided insight to the densification mechanism.  相似文献   

14.
High-performance B4C composites toughened by TiB2-SiC agglomerates were fabricated via reactive hot pressing with B4C, TiC and Si as raw materials. The TiB2-SiC composite serves as a composite toughening phase formed in the B4C matrix through an in situ reaction; its agglomerates are composed of interlocked TiB2 and SiC, which can remarkably improve the toughness of the B4C composites. The Vickers hardness, flexural strength and fracture toughness of the B4C-TiB2-SiC composite reached 35.18 ± 0.45 GPa, 567 ± 14 MPa, and 6.38 ± 0.18 MPa m1/2 respectively. The special toughening structure of the TiB2-SiC composite introduced into B4C ceramics was evaluated for the first time in this study.  相似文献   

15.
Silicon carbide reticulated porous ceramics (SiC RPCs) were fabricated by polymer sponge replica technique, followed by recoating with SiC slurries of two different sintering additives of MgO–Al2O3–SiO2 (Slurry 1) and polycarbosilane (Slurry 2). The sintering temperature of SiC RPCs recoated with Slurry 2 was 1100 °C, which was 200 °C lower than that for one recoated with Slurry 1. The prepared SiC RPCs exhibited homogeneous microstructure and contained pores with different sizes which was entrapped in the strut of SiC RPCs, small pores with diameter lower than 4 μm and large pores with diameter higher than 10 μm. Bending strength of SiC RPCs recoated with Slurry 1 was two times higher than that for the non-recoated samples, which was 1.88 MPa and was a little higher than that for one recoated with slurry 2. At the same time, high thermal shock resistance and high refractoriness were achieved for SiC RPCs recoated with Slurry 2.  相似文献   

16.
《Ceramics International》2017,43(6):5343-5346
A polycrystalline SiC ceramic prepared by pressureless sintering of α-SiC powders with 3 vol% Al2O3-AlN-Y2O3 additives in an argon atmosphere exhibited a high electrical resistivity of ~1013 Ω cm at room temperature. X-ray diffraction revealed that the SiC ceramics consisted mainly of 6H- and 4H-SiC polytypes. Scanning electron microscopy and high resolution transmission electron microscopy investigations showed that the SiC specimen contained micron-sized grains surrounded by an amorphous Al-Y-Si-O-C-N film with a thickness of ~4.85 nm. The thick boundary film between the grains contributed to the high resistivity of the SiC ceramic.  相似文献   

17.
ZrB2-based ceramics with SiCw were produced by hot pressing at 1750 °C for 1 h from mixed powders after adding liquid polycarbosilane. The obtained ZrB2-SiCw composites had toughness up to 7.57 MPa m1/2, which was much higher than those for monolithic ZrB2, SiC particles reinforced ZrB2 composites, and other ZrB2–SiCw composites directly sintered at high temperatures. The added liquid polycarbosilane could reduce the sintering temperatures and restrict the reaction of matrix with whisker, which led to fewer damages to the whisker and high fracture toughness.  相似文献   

18.
The mechanical properties of zirconium diboride–silicon carbide (ZrB2–SiC) ceramics were characterized from room temperature up to 1600 °C in air. ZrB2 containing nominally 30 vol% SiC was hot pressed to full density at 1950 °C using B4C as a sintering aid. After hot pressing, the composition was determined to be 68.5 vol% ZrB2, 29.5 vol% SiC, and 2.0 vol% B4C using image analysis. The average ZrB2 grain size was 1.9 μm. The average SiC particles size was 1.2 μm, but the SiC particles formed larger clusters. The room temperature flexural strength was 680 MPa and strength increased to 750 MPa at 800 °C. Strength decreased to ~360 MPa at 1500 °C and 1600 °C. The elastic modulus at room temperature was 510 GPa. Modulus decreased nearly linearly with temperature to 210 GPa at 1500 °C, with a more rapid decrease to 110 GPa at 1600 °C. The fracture toughness was 3.6 MPa·m½ at room temperature, increased to 4.8 MPa·m½ at 800 °C, and then decreased linearly to 3.3 MPa·m½ at 1600 °C. The strength was controlled by the SiC cluster size up to 1000 °C, and oxidation damage above 1200 °C.  相似文献   

19.
The long-term oxidation resistance of pressureless liquid-phase-sintered (PLPS) α-SiC was investigated as a function of the content of sintering additive (in particular, YAG) at 1500 °C in air. It is shown that, regardless of the vol.% YAG, the oxidation is passive at that high temperature, with a kinetics given by the paralinear-rate law. This is because the oxide scales grow due to oxidation of the SiC grains, but recede due to the formation of a eutectic phase and to the carbothermal reduction of YAG. It is also shown that the oxidation resistance of PLPS SiC decreases markedly with increasing vol.% YAG, an effect that is especially marked above 7.3 vol.% YAG where a change in oxidation behaviour occurs. Thus, while up to 7.3 vol.% YAG the PLPS SiC ceramics gain mass during the entire oxidation process (500 h) because the oxide scales are at least semi-protective, from 11.1 vol.% YAG onwards the PLPS SiC ceramics first gain mass and then lose mass linearly over oxidizing time because the oxide scales are non-protective. Finally, implications for the design of PLPS SiC ceramics that can tolerate prolonged exposures at high temperatures in air are discussed.  相似文献   

20.
Al2O3/SiC micro/nano composites were prepared by axial pressing of poly(allyl)carbosilane-coated submicrometre alumina powder at elevated temperature (called also warm pressing, or plastic forming) with subsequent pressureless sintering in the temperature interval between 1700 and 1850 °C. Warm pressing at 350 °C and 50 MPa resulted in green bodies with high mechanical strength and with markedly higher density than in green bodies prepared by cold isostatic pressing of the same powder at 1000 MPa. The sintering of warm pressed specimens moreover yielded the composites with higher final density (less than 4% of residual porosity) with the microstructure composed of micrometer-sized alumina grains (D50 < 2 μm) with inter- and intragranular SiC precipitates. High sintering temperatures (>1800 °C) promoted the formation of intergranular platelets identified by TEM as 6H polytype of α-SiC. The maximum hardness (19.4 ± 0.5 GPa) and fracture toughness (4.8 ± 0.1 MPa m1/2) were achieved in the composites containing 8 vol.% of SiC, and sintered for 3 h at 1850 °C. These values are within the limits reported for nanocomposites Al2O3/SiC by other authors and do not represent any significant improvement in comparison to monolithic alumina.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号