共查询到20条相似文献,搜索用时 15 毫秒
1.
陈孝如 《数字社区&智能家居》2021,(33):12-13
计算机视觉中图像处理及图像理解是重要技术,图像语义分割对于图像理解具有直接影响。为能够进一步提高图像语义分割准确性以及效率,提出一种基于全卷积网络的图形语义分割可将任意尺寸图片输入其中,端对端实施像素级分割,能够显著提高分割准确度。但是在实际应用中,容易出现分辨率低问题,为提升图像语义分割精度,该文从FCN基础实施改进,减少池化步长、实现多尺度池化和叠加高层语义因此以及改进代价函数。针对研究算法在PASCAL VOC2012数据集上对其实施验证以及评测,研究结果发现这一算法和原有算法相比平均交并比得到相助提升,达到0.6%。 相似文献
2.
针对轻量化网络结构从特征图提取有效语义信息不足,以及语义信息与空间细节信息融合模块设计不合理而导致分割精度降低的问题,本文提出一种结合全局注意力机制的实时语义分割网络(global attention mechanism with real time semantic segmentation network ,GaSeNet)。首先在双分支结构的语义分支中引入全局注意力机制,在通道与空间两个维度引导卷积神经网来关注与分割任务相关的语义类别,以提取更多有效语义信息;其次在空间细节分支设计混合空洞卷积块,在卷积核大小不变的情况下扩大感受野,以获取更多全局空间细节信息,弥补关键特征信息损失。然后重新设计特征融合模块,引入深度聚合金塔池化,将不同尺度的特征图深度融合,从而提高网络的语义分割性能。最后将所提出的方法在CamVid数据集和Vaihingen数据集上进行实验,通过与最新的语义分割方法对比分析可知,GaSeNet在分割精度上分别提高了4.29%、16.06%,实验结果验证了本文方法处理实时语义分割问题的有效性。 相似文献
3.
基于卷积神经网络的语义分割模型易存在提取特征不充分、上采样恢复原图尺寸时丢失细节等问题,导致分割精度降低。对比提出一种基于全卷积网络DeepLab v3的改进算法。采用LeakyReLU激活函数,增强网络提取较弱特征的能力;输入图像在多孔空间金字塔池化(ASPP)后,使用密集上采样卷积(DUC)恢复与原图尺寸一致的预测图;在训练时使用Nadam优化器,提高网络的收敛速度和鲁棒性。在PASCAL VOC 2012数据集上进行了验证与评测,结果表明算法平均交并比(mIoU)相比于原算法提高0.6%。 相似文献
4.
5.
6.
目前图像语义分割算法中可能会出现分割图像的不连续与细尺度目标丢失的缺陷,故提出可变形卷积融合增强图像的语义分割算法。算法集HRNet网络框架、Xception Module以及可变形的卷积于一体,用轻量级Xception Module优化HRNet原先存在的Bottleneck模块,同时在网络的第一阶段串联融合可变形卷积,通过建立轻量级融合加强网络从而增强针对细尺度目标特征物的辨识精度,从而使得该轻量级融合增强网络在粗尺度目标物被分割时取得相对多的细尺度目标的语义特征信息,进一步缓解语义分割图像的不连续与细尺度的目标丢失。使用Cityscapes数据集,实验结果可以说明,优化后的算法对于细尺度目标分割精度得到了显著的增强,同时解决了图像语义分割导致的分割不连续的问题。然后进行实验使用的是公开数据集PASCAL VOC 2012,实验进一步的验证了优化算法的鲁棒性以及泛化能力。 相似文献
7.
遥感图像地物种类丰富、尺寸多变、分布不均衡、背景复杂,导致经典图像语义分割网络难以在遥感图像上取得理想分割效果。局部注意力网络模型(LANet)在遥感图像语义分割上取得了较好的实验效果,但大尺寸、小尺寸和细长的地物目标分割效果不佳。提出了一种改进LANet网络的高分辨率遥感图像语义分割网络模型,首先,针对全局特征提取设计了全局卷积模块(GCM+),以组合卷积的形式扩大感受野,提升大尺寸地物目标的分割性能;其次,利用针对计算机视觉提出的激活函数Funnel ReLU(FReLU)来解决细小目标漏分的问题。实验结果表明:该网络模型在Potsdam数据集上平均交并比达到了75.83%,像素准确率达到了94.95%,比基础网络LANet有较大提升。 相似文献
8.
陈金令;赵成明;李洁 《计算机应用与软件》2025,(4):311-318+334
语义分割网络在编码器-解码器中融合高低水平特征存在以下问题:(1)在空间和通道中特征提取无法同步,导致特征组合无法获取全局上下文信息;(2)特征融合无法充分利用高低水平特征图像,导致语义边界模糊。设计全局空洞空间金字塔池化,该结构不仅在空间上提取多尺度信息和通道上对图像信息充分利用,还增强编码器阶段的特征重用。设计特征融合注意力模块,在编码器中连接不同阶段的高低水平特征和新特征。实验表明,该算法在Cityscapes数据集上达到了77.92%mIoU。 相似文献
9.
随着深度学习方法的不断发展,基于深度卷积网络特征的语义分割已经成为自动驾驶、室内导航、遥感制图等领域视觉感知应用的一项重要技术.然而对于多样性变化背景中的目标图像,现有基于局部上下文卷积特征的语义分割方法仍然存在分类精度低的问题.为此,提出了基于可变向卷积网络的语义分割算法.首先,在特征图每一个像素点上预测对象主要观测... 相似文献
10.
针对语义SLAM(simultaneous localization and mapping)中语义分割速度较慢,实时性较低、占用资源过多等问题,提出一种含有自适应通道注意力机制的轻量级Mask R-CNN网络,由于原有的语义分割网络里的残差网络复杂,且应用环境在室内,环境较为简单,故该轻量级网络将原有复杂的主干网络中的ResNet-50利用深度可分离卷积与分组卷积改进为更加轻量的ResNet-DS-tiny(ResNet with depthwise separable convolutions),并加入自适应通道注意力机制。在自适应通道注意力模块中,利用加权方式对输入的RGB-D图像从空间和通道赋予不同的权重,增强了特征的表达能力。此外,为了轻量化特征金字塔,使用使用不同空洞率的空洞卷积来提取不同大小感受野的特征信息,有效地获取了多尺度的特征。相较于传统的特征金字塔,空洞卷积减少了参数量。在更充分获取 RGB 信息特征的同时,提升了语义分割系统的实时性并减少了资源占用。 相似文献
11.
目前,深度全卷积网络在图像语义分割领域已经取得了瞩目的成就,但特征图的细节信息在多次下采样过程中会大量损失,对分割精度造成影响.针对该问题设计了一个用于图像语义分割的深度全卷积网络.该网络采用\"编码器—解码器\"结构,在编码器后端引入空洞卷积以降低细节信息的损失,在解码过程中融合对应尺寸的低阶语义特征,并在解码器末端融入... 相似文献
12.
卫星;刘邵凡;杨国强;陆阳;魏臻 《计算机应用研究》2020,(S1):348-350
基于视觉的轨道检测是实现矿井机车无人驾驶的重要内容,而传统人工特征提取的轨道检测算法在精度和速度上均存在弊端,且井下光照、积水等环境影响因素导致不可照搬地面车道线检测算法。为此提出一种适用于井下轨道实时检测的改进双边分割深度学习网络。首先给出检测网络整体结构,其次重点提出了用于获取较大感受野的金字塔注意力模块,以及用于综合空间路径模块和金字塔注意力模块特征的通道注意力融合模块,最后进行了实验验证。结果表明,所提网络能够有效提取出轨道区域,检测速率达到50 fps,检测精度达到86. 79%。 相似文献
13.
针对现有语义分割算法参数量过多、内存占用巨大导致其很难满足自动驾驶需要等现实应用的问题,提出一种基于可分离金字塔模块(SPM)的新颖、有效且轻量的实时语义分割算法。首先,利用特征金字塔形式的分解卷积和扩张卷积来构建瓶颈结构,从而以一种简单但有效的方式提取局部和上下文信息;然后,提出基于计算机视觉注意力的上下文通道注意力(CCA)模块,来利用深层语义修改浅层特征图通道权重优化分割效果。实验结果显示:所提出的算法在Cityscapes测试集上以每秒91帧的速度达到了71.86%的平均交并比(mIoU)。相较高效残差分解卷积网络(ERFNet),所提算法mIoU提高了3.86个百分点,处理速度是其2.2倍;与最新的非局部高效实时算法(LRNNet)相比,所提算法mIoU略低0.34个百分点,但处理速度每秒上升了20帧。实验结果表明,所提算法有助于完成如自动驾驶中要求的高效、准确的街道场景图像分割任务。 相似文献
14.
图像语义分割是计算机视觉感知系统的重要组成之一,针对现有的语义分割算法存在分割速度慢的问题提出基于DeepLabv2改进的实时图像语义分割算法。与DeepLabv2相比,改进后的算法使用轻量卷积神经网络Xception作为编码器,增加特征金字塔网络(Feature Pyramid Net,FPN)解码特征的过程,减少空洞金字塔池化网络(Atrous convolution Spatial Pyramid Pooling,ASPP)参数的数量,进而大幅度压缩了算法模型,提升了算法分割速度。此外,还对Focal Loss损失函数在多分类任务中难以选择超参数的问题做出改进,并用于提升算法分割精度。在Cityscapes和Pascal VOC2012数据集上的实验结果表明改进后的算法可达到实时分割速度且具有分割精度高的优点,同时还表明提出的超参数选择方法可进一步提升算法分割精度。 相似文献
15.
16.
为赋予语义分割网络在给定空间位置下选择性强调整体信息或细节信息的能力,提出了一种注意力融合算法,本算法在空洞空间金字塔池化(ASPP)的基础上融合胶囊网络中动态路由算法。首先,以骨干网络输出作为输入,经过多条并行空洞卷积支路得到不同尺度的特征图。然后,在每一条空洞卷积支路的后面增添一条评估支路来评测该条空洞卷积支路单独分割的能力。最后,对各个评估支路的输出进行注意力路由算法从而对各空洞卷积分配权重。在Pascal VOC 2012和Cityscapes两个数据集上,提出的模型在各组实验中均能提升1个百分点以上,并通过可视化注意力图表明,提出模型能够根据上下文信息对各空洞卷积支路进行有侧重的反向传播。 相似文献
17.
计算机硬件的发展极大程度地促进了计算机视觉的发展,卷积神经网络在语义分割中取得了令人瞩目的成就,但多卷积层叠加难免造成图像中目标边界信息的丢失。为了尽可能保留边界信息,提高图像分割精度,提出一种多尺度空洞卷积神经网络模型。该模型利用多尺度池化适应图像中不同尺度目标,并利用空洞卷积学习目标特征,在更加准确识别目标的同时,提高目标边界的识别精度,在ISPRS Vaihingen数据集上的实验结果表明,提出的多尺度空洞卷积神经网络对于目标边界的拟合结果较为理想。 相似文献
18.
目的 针对目前基于深度学习的脑肿瘤分割算法参数量大、计算复杂和快速性差的问题,提出了一种超轻量级快速语义分割网络LRUNet (lightweight rapid UNet),在保证分割精度提升的同时,极大地减少了网络的参数量与计算量,达到快速分割的效果。方法 LRUNet网络结构基于UNet,将3D-UNet的通道数减少为原来的1/4,减少原先3D-UNet过多的参数量;将UNet网络中除最后一层外的所有传统卷积变为深度可分离卷积,深度可分离卷积以牺牲极少精度,大大减少网络参数量,实现网络的轻量级;使用空间—通道压缩和激发模块(spatial and channel squeeze&excitation block,scSE),该模块能够放大特征图中对模型有利的参数的权重,缩小对模型不利参数的权重,提升网络分割的精度。结果 在BraTS 2018(Brain Tumor Segmentation Challenge 2018)数据集上的在线验证结果显示,该模型在全肿瘤、核心区肿瘤和增强区肿瘤分割的平均Dice系数分别为0.893 6、0.804 6和0.787 2。LRUNet与同为轻量级网络的S3D-UNet相比Dice有所提升,但是,参数量仅为S3D-UNet的1/4,FLOPs (floating point operations per second)仅为1/2。结论 与3D-UNet、S3D-UNet和3D-ESPNet等算法相比,LRUNet算法不仅保证精度得到提升,而且极大地减少网络中计算的参数量与计算成本消耗,同时网络模型的预测速度得到很大提升,使得快速语义分割在3维医学图像领域成为可能。 相似文献
19.
20.
遥感影像的地块背景特征复杂,当前地块分割方法不能较好地处理模糊的边缘信息,导致分割精度不理想;文章利用注意力机制处理地块特征,提出了一种基于全局坐标注意力机制的遥感地块分割网络:GCAT-U-Net;该方法在U-Net网络基础上嵌入了全局坐标注意力机制,加强了深度神经网络对于遥感影像数据中重要特征的关注度;在公开的GID数据集上的实验结果表明,文章提出的模型将准确率从0.9041提升到了0.9227,比传统U-Net网络提高了2百分点;结合特征自身重要性和特征位置信息的全局坐标注意力机制有助于更精确的目标定位,其输出相较于嵌入单一注意力机制,地块边界更为清晰,提升效果更为显著。 相似文献