共查询到20条相似文献,搜索用时 218 毫秒
1.
现有的基于网络表示学习的链路预测算法主要通过捕获网络节点的邻域拓扑信息构造特征向量来进行链路预测,该类算法通常只注重从网络节点的单一邻域拓扑结构中学习信息,而对多个网络节点在链路结构上的相似性方面研究不足。针对此问题,提出一种基于密集连接卷积神经网络(DenseNet)的链路预测模型(DenseNet-LP)。首先,利用基于网络表示学习算法node2vec生成节点表示向量,并利用该表示向量将网络节点的结构信息映射为三维特征数据;然后,利用密集连接卷积神经网络来捕捉链路结构的特征,并建立二分类模型实现链路预测。在四个公开的数据集上的实验结果表明,相较于网络表示学习算法,所提模型链路预测结果的ROC曲线下方面积(AUC)值最大提高了18个百分点。 相似文献
2.
已有的链路预测算法主要是基于目标网络结构信息的,没有考虑到与目标网络相关的文本信息。针对此问题,提出一种基于网络节点文本增强的链路预测算法。将网络节点的文本内容融入到网络表示学习过程中,使学习得到的网络表示向量中含有节点的文本属性。通过余弦相似性算法构建出目标网络的相似度矩阵。在3个真实的数据集上做链路预测仿真实验。实验结果显示,相比于现存的多种链路预测算法,该算法预测结果的精确度有明显提升,同时能够有效且准确地挖掘网络中节点间的结构关联性和内部相关性。 相似文献
3.
针对机会网络节点移动性、节点间间歇性连接等特点,提出基于深度学习的机会网络链路预测机制.基于时间序列理论和方法,综合考虑节点间边的权值、节点强度和局部路径与节点间链路关系,构建反映机会网络链路状态随时间动态变化的相似性指标W_Katz;利用信息熵确定受限玻尔兹曼机的隐含层神经元数量,构建用于特征提取的深度学习模型,采用自适应学习率缩短其收敛时间;采用高斯核函数、K折交叉验证构造基于最小二乘支持向量回归机的预测模型;采用命中率R_HIT和受试者工作特征曲线的Precision、Accuracy指标评价预测结果.通过INF 2005、MIT数据集上的对比实验结果表明,该方法可以获得更好的预测效果. 相似文献
4.
传统的异构网链路预测研究有基于元路径监督学习的PathPredict算法与MPBP算法,但它们并不能充分利用异构网提供的丰富信息来进行链路预测.在原有传统监督学习算法的基础上,首先为了增加链路熵和时间动态信息而设计了HLE-T算法,然后通过链路强弱关系的数值分段构建多分类问题的监督学习算法MSLP链路预测模型,最后在4个稠密度不同的数据集下完成了实验测试.实验结果表明,MSLP链路预测模型一定程度上提升了异构网中的链路预测性能,对未来链路预测研究具有一定的借鉴意义. 相似文献
5.
许多链路预测方法仅仅关注预测的准确度衡量指标,忽略了精确度衡量标准在实际应用中的重要作用,且没有考虑共同邻居与预测节点间紧密度对相似性刻画的影响。针对上述问题,提出了一种基于拓扑连接紧密度的相似性链路预测算法。该方法通过局部拓扑结构定义共同邻居紧密度,并引入参数调节不同网络中紧密程度,最终刻画网络节点间的相似度。6个实际网络测试表明,相比共同邻居(CN)、资源分配(RA)、Adamic-Adar(AA)、局部路径(LP)、Katz等相似性指标,该算法提升了链路预测的预测精度。 相似文献
6.
近年来,复杂网络中的链路预测问题受到越来越多的关注,链路预测的应用场景也越来越广泛,因此如何提高链路预测精度是一个重要问题。目前已提出了很多方法,其中加权相似性指标的预测方法取得了很好的效果。然而传统的加权网络链路预测方法仅考虑了链接的自然权重,忽略了链接的拓扑权重对预测精度的影响。因此,针对加权网络的链路预测,综合考虑网络中边的聚类和扩散特性并将其作为边的拓扑权重,提出了基于链接拓扑权重的WCD含权预测指标,包括WCD-CN,WCD-AA,WCD-RA和WCD-LP4个相似性指标。文中以Matlab为实验平台,在两个带权数据集(USAir,Bibble)和两个无权数据集(Pblogs,Dolphins)上进行实验,并以AUC作为评价指标。仿真结果表明,与基于自然权重的含权指标、基于簇系数的结构含权指标相比,所提算法具有更好的预测精度。 相似文献
7.
融入权重信息的加权链路预测算法大都具有更好的预测效果,现有的大多数加权算法都是基于外部权重信息,基于网络拓扑结构权重的研究较少.针对此问题,提出一种利用无权网络的结构特征生成结构权重的加权链路预测算法.首先计算资源分配指标得到网络局部结构相似性,再利用DeepWalk算法学习网络结构特征生成节点向量得到余弦相似性,将2... 相似文献
8.
现有的基于随机游走链路预测指标在无权网络上的转移过程存在较强随机性,没有考虑在网络结构上不同邻居节点间的相似性对转移概率的作用。针对此问题,提出一种基于网络表示学习与随机游走的链路预测算法。首先,通过基于深度学习的网络表示学习算法——DeepWalk学习网络节点的潜在结构特征,将网络中的各节点表征到低维向量空间;然后,在重启随机游走(RWR)和局部随机游走(LRW)算法的随机游走过程中融合各邻居节点在向量空间上的相似性,重新定义出邻居节点间的转移概率;最后,在5个真实数据集上进行大量实验验证。实验结果表明:相比8种具有代表性的基于网络结构的链路预测基准算法,所提算法链路预测结果的AUC值均有提升,最高达3.34%。 相似文献
9.
10.
《计算机应用与软件》2017,(10)
现有的基于节点相似性的链路预测算法,在提升预测准确度时往往无法兼顾计算复杂度。受自然语言概率图模型在词向量表征上的运用启发,提出一种基于SkipGram模型的链路预测方法。首先提出基于概率的随机游走方法,通过这种方法得到网络节点的采样序列;然后结合SkipGram模型将网络节点映射到一个低维向量空间来降低复杂度;最终以向量间的距离作为衡量网络节点间相似性的指标,进而完成链路预测。通过在6个具有代表性的真实网络中进行实验和比较发现,提出的模型在预测准确度上得到大幅提高。 相似文献
11.
12.
链路预测是网络分析与挖掘领域中备受关注的研究方向.链路预测算法所预测的网络中的缺失连接实际上是一种数据挖掘的过程,而推断的将来可能产生的连接则与网络的发展演化相关.因此,如何提高链路预测的精确度是一项有意义且具有挑战性的研究.基于自我中心网络分解和社区聚类的最新研究,提出一种基于自我中心网络结构特征和网络表示学习的链路预测算法(Ego-Embedding).Ego-Embedding将原网络转换成角色图,再结合网络的微观结构信息和上下文信息重构嵌入过程,为每一个节点学习一个或多个向量表示,使向量表示更准确地描述网络节点信息,从而提高链路预测的精确度.在3个公开数据集(Facebook,PPI-Yeast和ca-HepTh)上进行实验仿真,并使用AUC作为评价指标,仿真结果表明,算法Ego-Embed-ding的表现均优于5个实验对比方法(CN,AA,Node2vec,M-NMF和Splitter),且最高将链路预测的错误率减少了约47%. 相似文献
13.
为提升客流量预测精度,提出基于深度学习的轨道交通客流量预测模型。首先,通过自助站台系统收集乘客的进出站信息。其次,初步处理数据,包括数据清洗、归一化整理。最后,整合不同模型中的客流量数据,以揭示它们之间的相关性。基于深度学习中的卷积神经网络算法,构建了一种新型的轨道交通客流量预测模型,该模型利用历史客流数据进行训练,并能够自动学习数据中的复杂特征和规律,从而精准预测未来客流量变化。实验结果显示,所设计的模型精度达到89.91%,表明新模型在客流量预测准确性方面取得了显著的提升。 相似文献
14.
针对复杂网络链路预测受到网络性质的影响,从而降低复杂网络链路预测效果,提出基于混合深度学习的复杂网络链路预测方法.利用复杂网络在运行过程中的链路变化情况,综合考虑复杂网络历史信息对链路的影响系数,得到了RA指数、AA指数和CN指数等相似指数,基于混合深度学习的反向传播流程,分析复杂网络链路隐藏层的状态,利用复杂网络隐藏层的输出,预测出复杂网络链路输出值,将相似性指标作为复杂网络链路预测的训练样本,构建复杂网络链路预测模型,利用模式分类方法实现多个网络节点之间的链路预测.实验结果表明,基于混合深度学习的复杂网络链路预测方法将时间窗口设为360秒和180秒、样本维度为500和600时,预测效果是最好的,且预测精度较传统方法的预测精度高. 相似文献
16.
17.
18.
链路预测问题是复杂网络中数据挖掘领域的重要研究方向,然而复杂网络的结构与预测方法性能之间关系却很少受到关注。从聚类分析的角度探讨复杂网络结构对现有基于相似性度量的六种链路预测方法的性能影响,通过对合成复杂网络和真实复杂网络的对比实验进行分析。结果表明:随着聚类簇的增加,这六种方法在预测精度方面的性能均得到了极大的提升。对于具有较低聚类簇的稀疏复杂网络,叠加随机游动(SRW)预测性能表现最佳,而对于具有较高聚类簇的密集复杂网络,资源分配指数(RA)预测性能表现最佳。因此,对于不同类型的复杂网络应采用不同的方法进行链路预测。 相似文献
19.
链路预测旨在利用已知的网络节点和拓扑结构信息,预测网络中未连接的两个节点之间存在连边的可能性。基于网络拓扑相似性的链路预测方法计算复杂度低且预测效果好,但现有的相似性指标对共同邻居的邻域拓扑信息考虑较少。针对此问题,提出一种基于共同邻居邻域拓扑稠密性加权的链路预测方法。首先,基于邻域拓扑相对稠密指数量化节点的邻域拓扑结构;然后,利用共同邻居的节点度和邻域拓扑相对稠密指数刻画共同邻居及其邻域拓扑的相似性贡献;最后,提出基于共同邻居邻域拓扑稠密性加权的节点相似性指标。在多个实际网络数据上的实验结果表明,与现有相似性指标相比,该方法能够取得更高的预测精度。 相似文献
20.
文辉 《单片机与嵌入式系统应用》2023,(7):8-11+16
提出了一种基于无线传感器网络弹性路由的链路可靠性预测模型。首先,在研究了链路可靠性预测问题基础上建立链路可靠性预测映射函数。其次,设计了一种有监督的深度学习模型进行链路可靠性预测,从而提高模型泛化能力。最后,提出了一种基于当前最短路径和链路可靠性度量的弹性路由模型来消除网络攻击的影响并尽可能恢复网络连接。在实验阶段,与CN、LBCN、SRW和WL等链路可靠性预测模型相比,所提SDLM链路预测模型综合性能最优,AUC指标为0.986 4,精度为0.878 5。与FRR和SQR进行对比,所提弹性路由模型在传输延迟、系统剩余能量、平均路由长度和节点故障数量等指标方面综合性能最优。 相似文献