首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
网络嵌入是将高维网络映射到低维向量空间的一种表示学习方法.目前,人们对动态同质网络嵌入和静态异质信息网络嵌入已经开展了一些研究,但动态异质网络上的嵌入研究仍然较少.如果直接应用静态网络嵌入或动态同质网络嵌入方法来解决动态异质网络嵌入问题,会由于忽略网络的动态或异质特性而导致严重的信息丢失.因此,提出一种基于时间和类别约束随机游走的动态异质网络嵌入方法TNDE.该方法引入类别约束,能够解决动态异质网络中由于异质特性带来的语义信息保留问题.不同于其他动态网络中的时序随机游走,该方法采用非递减的时间约束来增量式地进行随机游走,能够解决网络同时具备动态和异质特性而引入的强语义局部结构上的边时间戳一致的挑战,避免游走时出现时间戳陷入的问题.通过对实时变化的增量游走和嵌入学习,TNDE提供了一种高效的在线表示学习算法.在3个真实数据集上的实验结果表明:该方法在不同特性的网络中具有良好的通用性.与目前最先进方法相比,能够得到下游链路预测和节点分类任务中2.4%~92.7%的准确度提升,显著提高了嵌入质量,并在保证良好嵌入质量的前提下,缩短算法运行时间12.5%~99.91%.  相似文献   

2.
为理解不同异构网络嵌入模型之间的差异,并解决评估异构网络嵌入模型所存在的定性分析复杂且隐藏的问题,对比分析方法首先应统一模型的评估指标和任务,然后训练模型以获取模型训练过程中的大量参数和特征信息,并保留完整且非均值化的评估结果进行可视化.基于模型参数和特征数据,设计并实现一个交互对比可视分析工具——HINCompare,包括基础评估指标的分布概览和推荐结果对比视图,以及模型嵌入过程中融合的局部拓扑结构特征视图.该工具支持探索模型中不同特征聚合方法所存在的共同模式和不同架构的模型之间的差异.此外,HINCompare通过热力图展示了用户在电影类型和年份上的偏好特征,可结合推荐结果的上下文信息进行分析和评估,解决推荐中的黑盒问题,提供推荐结果的来源信息,增加可解释性.最后,通过真实的豆瓣电影数据验证了系统的有效性.  相似文献   

3.
         下载免费PDF全文
Heterogeneous information networks,which consist of multi-typed vertices representing objects and multi-typed edges representing relations between objects,are ubiquitous in the real world.In this paper,we study the problem of entity matching for heterogeneous information networks based on distributed network embedding and multi-layer perceptron with a highway network,and we propose a new method named DEM short for Deep Entity Matching.In contrast to the traditional entity matching methods,DEM utilizes the multi-layer perceptron with a highway network to explore the hidden relations to improve the performance of matching.Importantly,we incorporate DEM with the network embedding methodology,enabling highly efficient computing in a vectorized manner.DEM's generic modeling of both the network structure and the entity attributes enables it to model various heterogeneous information networks flexibly.To illustrate its functionality,we apply the DEM algorithm to two real-world entity matching applications:user linkage under the social network analysis scenario that predicts the same or matched users in different social platforms and record linkage that predicts the same or matched records in different citation networks.Extensive experiments on real-world datasets demonstrate DEM's effectiveness and rationality.  相似文献   

4.
服务推荐过程中,为充分利用用户标签标注关系与用户的社交关系信息,提升推荐结果的准确性,提出一种基于异质用户网络嵌入的方法,通过将用户节点映射为一个低维的向量,再利用得到的用户向量进行协同推荐。在公开数据集Delicious上进行了实证分析,实验结果表明,相对已有的2个方法,该方法的推荐精度可分别提高18.1%和16.6%,且发现在学习用户表征向量时,节点之间的直接关系与\"朋友的朋友\"关系对表示用户节点结构信息同等重要;同时,推荐过程中为目标用户返回的相似用户在25个最为适宜。  相似文献   

5.
         下载免费PDF全文
Ruan  Chun-Yang  Wang  Ye  Ma  Jiangang  Zhang  Yanchun  Chen  Xin-Tian 《计算机科学技术学报》2019,34(6):1217-1229

Heterogeneous information network (HIN)-structured data provide an effective model for practical purposes in real world. Network embedding is fundamental for supporting the network-based analysis and prediction tasks. Methods of network embedding that are currently popular normally fail to effectively preserve the semantics of HIN. In this study, we propose AGA2Vec, a generative adversarial model for HIN embedding that uses attention mechanisms and meta-paths. To capture the semantic information from multi-typed entities and relations in HIN, we develop a weighted meta-path strategy to preserve the proximity of HIN. We then use an autoencoder and a generative adversarial model to obtain robust representations of HIN. The results of experiments on several real-world datasets show that the proposed approach outperforms state-of-the-art approaches for HIN embedding.

  相似文献   

6.
Metapath2vec和Metapath2vec++异质网络表示学习方法只保持了网络原有的拓扑结构,没有考虑异质网络自身存在的聚类结构,从而降低网络中节点表示的准确性.针对此问题,基于元路径随机游走策略提出两种保持聚类结构的异质网络表示学习模型:HINSC和HINSC++.模型将网络中节点的one-hot表示作为前馈...  相似文献   

7.
基于元结构(如元路径或元图)的网络嵌入方法,能够有效地利用异构网络结构.但与元路径相比,元图能够捕获更加复杂的结构信息,更能提升异构信息网中相似节点匹配的准确性.然而,现有的基于元图的嵌入方法具有如下局限:大多由专家指定元图类型,在大型复杂网络的应用环境中并不适用;虽然融合了多个元图进行嵌入,但并未考虑元图权重的差异性;部分模型利用用户的期望语义关系生成可以保留特定语义的元图组合,但这类模型过分依赖元图选择和用于监督学习的样本,缺乏通用性.基于此,提出一种多元图融合的异构网络嵌入方法,该方法包括2部分:第1部分是元图发现,目的是挖掘代表当前网络结构和语义特征的重要元图;第2部分是基于多元图融合的节点嵌入,主要内容是提出了一种基于元图的通用节点相似度度量方法,同时利用神经网络嵌入节点的元图特征.实验结果表明,与其他网络嵌入方法相比,提出的方法具有较高的准确性和效率.  相似文献   

8.
         下载免费PDF全文
Knowledge tracing is of great significance for providing better personalized learning guidance and has thus attracted extensive research attention in recent years. The task of knowledge tracing is to model students'' learning process on the basis of historical exercise records and trace students'' knowledge proficiency, thereby predicting students'' performance on future exercises or recommending exercises for better proficiency. Existing methods focus on either the skill level or the exercise level, ignoring the relationships among exercises and Knowledge Components (KCs). The classical single-factor models include the Deep Knowledge Tracing (DKT) {model} and the Dynamic Key-Value Memory Network (DKVMN) model. Although a few models, such as the Bayesian Knowledge Tracing (BKT) model and the Knowledge Proficiency Tracing (KPT) model, utilize the Q-matrix to improve model performance, most of them ignore the interaction among KCs, not to mention models that do not use the Q-matrix. Inspired by the recent success of network embedding, this paper presents a heterogeneous network embedding framework for knowledge tracing called HNEKT that takes both exercises and KCs into account. To adapt to the application of knowledge tracing, this paper also proposes several meta-paths to generate meaningful node sequences for network embedding. Besides, it explores other side information as well to improve the extensibility and effectiveness of the proposed model. Extensive experiments on three real-world datasets demonstrate the effectiveness of the HNEKT model.  相似文献   

9.
基于异构信息网络嵌入的推荐技术能够有效地捕捉网络中的结构信息,从而提升推荐性能.然而现有的基于异构信息网络嵌入的推荐技术不仅忽略了节点的属性信息与节点间多种类型的边关系,还忽略了节点不同的属性信息对推荐结果不同的影响.为了解决上述问题,提出一个自注意力机制的属性异构信息网络嵌入的商品推荐(attributed heterogeneous information network embedding with self-attention mechanism for product recommendation, AHNER)框架.该框架利用属性异构信息网络嵌入学习用户与商品统一、低维的嵌入表示,并在学习节点嵌入表示时,考虑到不同属性信息对推荐结果的影响不同和不同边关系反映用户对商品不同程度的偏好,引入自注意力机制挖掘节点属性信息与不同边类型所蕴含的潜在信息并学习属性嵌入表示.与此同时,为了克服传统点积方法作为匹配函数的局限性,该框架还利用深度神经网络学习更有效的匹配函数解决推荐问题.AHNER在3个公开数据集上进行大量的实验评估性能,实验结果表明AHNER的可行性与有效性.  相似文献   

10.
现有的异质网络嵌入方法不仅忽略了网络中的异质边及其对节点嵌入的不同影响,还未考虑到网络结构与节点属性的融合。为此提出了一种融合属性信息的异质网络嵌入方法(SHANE)。将序列到序列(seq2seq)模型应用到依据边类型划分的子图中,无缝融合节点的结构信息和属性信息,同时捕捉节点的高阶语义信息。实验表明,SHANE在两个不同类型的数据集中进行链接预测任务,可以取得相对显著的效果。  相似文献   

11.
石乐昊  寇月  申德荣  聂铁铮  李冬 《软件学报》2022,33(10):3619-3634
由于异构信息网络具有丰富的语义信息而在推荐任务中得到广泛应用.传统的面向异构信息网络的推荐方法忽略了网络中关联关系的异质性,以及不同关联类型之间的相互影响.本文提出了一种基于多视角嵌入融合的推荐模型,分别从同质关联视角和异质关联视角来挖掘异构信息网络的深层潜在特征并加以融合,有效地保证了推荐结果的准确性.针对同质关联视角,提出了一种基于图卷积神经网络的嵌入融合方法,通过对同质关联作用下节点邻域信息的轻量式卷积,实现节点嵌入的局部融合.针对异质关联视角,提出了一种基于注意力的嵌入融合方法,利用注意力机制来区分不同关联类型对节点嵌入的影响,实现节点嵌入的全局融合.通过实验验证了本文所提出的关键技术的可行性和有效性.  相似文献   

12.
图神经网络作为一种新的深度学习模型,被广泛运用在图数据中,并极大地推动了推荐系统、社交网络、知识图谱等应用的发展.现有的异构图神经网络通常事先定义了多条元路径来学习异构图中的复合关系.然而,这些模型通常在特征聚合步骤中只考虑单条元路径,导致模型只关注了元路径的局部结构,忽略了元路径之间的全局相关性;还有一些模型则是忽略掉了元路径的中间节点和边信息,导致模型无法学习到元路径内部的语义信息.针对以上问题,本文提出一种基于元路径的图Transformer神经网络(MaGTNN).该模型首先将异构图采样为基于元路径的多关系子图,利用提出的位置编码和边编码的方法来获取元路径中的语义信息.随后使用改进的图Transformer层计算出目标节点与其元邻居的相似度,并利用该相似度来聚合其所有的元邻居信息.在3个公开数据集的节点分类和节点聚类任务中, MaGTNN均高于最新的基准模型.  相似文献   

13.
服务发现机制研究进展   总被引:2,自引:1,他引:1  
以现有服务发现机制发展过程为主线,重点分析了独立服务发现平台和集成式服务发现平台的主要工作机制和优缺点,在归纳和总结现有服务发现机制普遍采用烟囱式、一视同仁以及叠加式策略等问题的同时,提出了未来服务发现机制的研究方向。  相似文献   

14.
属性网络嵌入旨在映射网络中的节点和链接关系到低维空间,同时保留其固有的结构和属性特征.异质属性网络中多种类型的节点和链接关系给网络嵌入学习提供了丰富的辅助信息,同时也带来了新的挑战.提出异质属性网络嵌入模型(heterogeneous attribute network embedding based on the PPMI, HANEP),旨在将网络中多种类型的节点和(或)多种类型的链接关系映射到低维、紧凑的空间,同时保护节点的属性特征和不同类型对象之间的异质链接承载的复杂、多样且丰富的语义信息.HANEP模型首先基于样本属性的相似性构建属性图、依据元路径抽取异质属性网络的拓扑结构,然后通过随机冲浪获得属性和拓扑概率共现(probabilistic co-occurrence, PCO)矩阵,并计算其正点对互信息(positive point-wise mutual information, PPMI),进而采用多个自编码器(auto-encoder, AE)捕捉节点属性和异质链接的本质信息.元路径可以捕捉异质网络中多种类型节点间的链接关系,构建属性图可以清晰描述节点属性的非线性流行结构,属性和拓扑的局部成对约束和图表示有助于整合节点属性和网络拓扑的一致性和互补性关系,PPMI表示可以捕捉属性和拓扑的高阶近邻信息及潜在的复杂非线性关系.在3个真实数据集上的实验结果验证了HANEP算法的有效性.  相似文献   

15.
异质网络嵌入是将异质网络中丰富的结构和语义信息嵌入到低维的节点表示中.图卷积网络是处理网络数据的一种有效方法,当前也被用于研究异质网络的多类型节点和多维关系的表示问题,现有的图卷积网络模型主要采用元路径来表示不同类型节点间的一种语义关系.然而,孤立的单条元路径无法准确地反映节点间的复杂语义,即不能充分利用节点间存在的多种高阶间接语义关系.针对上述问题,提出了一种基于元图卷积的异质网络嵌入学习算法MGCN(meta-graph convolutional network),包括基于元图的异构邻接矩阵计算以及学习节点的嵌入表示2个阶段,基于元图的异构邻接矩阵设计了融合多条元路径上的不同语义的计算方法,能够挖掘节点间的高阶间接关系,通过异构邻接矩阵的计算,能够聚合节点邻域特征为统一模式,此种卷积学习降低了图卷积方法的嵌入维数,从而减少了计算时间.在2个公开的异质网络数据集上进行社会计算基础研究任务的实验表明,MGCN在节点分类、聚类任务上比基线模型有更好的性能且需更少的训练时间.  相似文献   

16.
荀亚玲  毕慧敏  张继福 《软件学报》2023,34(11):5230-5248
异质信息网络是一种异质数据表示形式,如何融合异质数据复杂语义信息,是推荐系统面临的挑战之一.利用弱关系具有的丰富语义和信息传递能力,构建一种面向推荐系统的异质信息网络高阶嵌入学习框架,主要包括:初始化信息嵌入、高阶信息嵌入聚合与推荐预测3个模块.初始化信息嵌入模块首先采用基于弱关系的异质信息网络最佳信任路径筛选算法,有效地避免在全关系异质信息网络中,采样固定数量邻居造成的信息损失,其次利用新定义的基于多头图注意力的多任务共享特征重要性度量因子,筛选出节点的语义信息,并结合交互结构,有效地表征网络节点;高阶信息嵌入聚合模块通过融入弱关系及网络嵌入对知识良好的表征能力,实现高阶信息表达,并利用异质信息网络的层级传播机制,将被采样节点的特征聚合到待预测节点;推荐预测模块利用高阶信息的影响力推荐方法,实现了推荐任务.该框架具有嵌入节点类型丰富、融合共享属性和隐式交互信息等特点.最后,实验验证UI-HEHo学习框架可有效地改善评级预测的准确性,以及推荐生成的针对性、新颖性和多样性,尤其是在数据稀疏的应用场景中,具有良好的推荐效果.  相似文献   

17.
Community structure is an important property of network. Being able to identify communities can provide invaluable help in exploiting and understanding both social and non-social networks. Several algorithms have been developed up till now. However, all these algorithms can work well only with small or moderate networks with vertexes of order 104. Besides, all the existing algorithms are off-line and cannot work well with highly dynamic networks such as web, in which web pages are updated frequently. When an already clustered network is updated, the entire network including original and incremental parts has to be recalculated, even though only slight changes are involved. To address this problem, an incremental algorithm is proposed, which allows for mining community structure in large-scale and dynamic networks. Based on the community structure detected previously, the algorithm takes little time to reclassify the entire network including both the original and incremental parts. Furthermore, the algorithm is faster than most of the existing algorithms such as Girvan and Newman's algorithm and its improved versions. Also, the algorithm can help to visualize these community structures in network and provide a new approach to research on the evolving process of dynamic networks.  相似文献   

18.
卷积神经网络在计算机视觉等多个领域应用广泛,然而其模型参数量众多、计算开销庞大,导致许多边缘设备无法满足其存储与计算资源要求。针对其边缘部署困难,提出使用迁移学习策略改进基于BN层缩放因子通道剪枝方法的稀疏化过程。本文对比不同层级迁移方案对稀疏化效果与通道剪枝选取容限的影响;并基于网络结构搜索观点设计实验,探究其精度保持极限与迭代结构的收敛性。实验结果表明,对比原模型,采用迁移学习的通道剪枝算法,在精度损失不超过0.10的前提下,参数量减少89.1%,模型存储大小压缩89.3%;对比原剪枝方法,将剪枝阈值从0.85提升到0.97,进一步减少参数42.6%。实验证明,引入迁移策略更易实现充分的稀疏化,提高通道剪枝阈值选取容限,实现更高压缩率;并在迭代剪枝的网络结构搜索过程中,提供更高效的搜索起点,利于快速迭代趋近至搜索空间的一个网络结构局部最优解。  相似文献   

19.
随着互联网、计算机等技术的深入发展,互联网为用户带来了各类网络服务用于增进用户交流。其中,问答社区为用户提供了提问和回答的交流平台,其目的是通过互联网实现用户间的知识经验分享和信息传播。但仍存在一些问题限制问答社区的发展,例如随着用户数量的不断增长,大量问题得不到及时回答且提问者对已有问题的回答并不满意。因此,对于问答社区来说,如何从大量的用户中找到专家用户是非常重要的。针对以上问题,本文提出一种基于异构信息网络的推荐方法,首先对问答社区中的问题属性和用户属性建立异构信息网络,利用元路径来捕捉异构信息网络中丰富的语义信息,然后使用基于元路径的相似度计算方法分别计算问题与用户的相似度矩阵,采用3种方式将得到的相似度矩阵与问题-用户评分矩阵相融合,然后使用矩阵分解获得问题和用户的潜在特征,最后使用因子分解机进行训练和推荐。在海川化工问答数据集上将本文提出的方法同多种先进的推荐算法进行对比,并利用评价指标对模型进行评估。实验结果表明,本文提出的算法在相关评估指标方面相较于之前的算法具有一定优势。  相似文献   

20.
影响力最大化的目的是在网络中发现能够触发最大数量的剩余节点参与到信息传播过程的一小群节点.目前异质信息网络中影响力最大化的研究通常从网络中抽取同质子图、或基于节点局部结构的元路径进行节点影响力的评估,没有考虑节点的全局特征和网络中高影响力节点间的集群现象给种子集合最终扩散范围造成的影响损失.文中提出了一种基于社区与结构熵的异质信息网络影响力最大化算法,该算法能够有效地从局部和全局两个方面度量节点的影响.首先,通过构建元结构保留节点在网络中的局部结构信息和异质信息度量节点的局部影响;其次,利用节点所属社区在整个网络中的权重占比对节点的全局影响进行度量;最后,综合求出节点的最终影响并选出种子集合.在真实数据集上进行的大量实验结果表明所提算法有较好的有效性和效率.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号