首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 684 毫秒
1.
Carbon nanotube–alumina (CNT–Al2O3) nanocomposites have been synthesized by direct growth of carbon nanotubes on alumina by chemical vapor deposition (CVD) and the as-grown nanocomposites were densified by spark plasma sintering (SPS). Surface morphology analysis shows that the CNTs and CNT bundles are very well distributed between the matrix grains creating a web of CNTs as a consequence of their in situ synthesis. Even after the SPS treatment, the CNTs in the composite material are still intact. Experimental result shows that the electrical conductivity of the composites increases with the CNT content and falls in the range of the conductivity of semiconductors. The nanocomposite with highest CNT content has electrical conductivity of 3336 S/m at near room temperature, which is about 13 orders of magnitude increase over that of pure alumina.  相似文献   

2.
Alumina ceramics reinforced with 1, 3, or 5 vol.% multi-walled carbon nanotubes (CNTs) were densified by pressureless sintering. Commercial CNTs were purified by acid treatment and then dispersed in water at pH 12. The dispersed CNTs were mixed with Al2O3 powder, which was also dispersed in water at pH 12. The mixture was freeze dried to prevent segregation by differential sedimentation during solvent evaporation. Cylindrical pellets were formed by uniaxial pressing and then densified by heating in flowing argon. The resulting pellets had relative densities as high as ~99% after sintering at 1500 °C for 2 h. Higher temperatures or longer times resulted in lower densities and weight loss due to degradation of the CNTs by reaction with the Al2O3. A CNT/Al2O3 composite containing 1 vol.% CNT had a higher flexure strength (~540 MPa) than pure Al2O3 densified under similar conditions (~400 MPa). Improved fracture toughness of CNT–Al2O3 composites was attributed to CNT pullout. This study has shown, for the first time, that CNT/Al2O3 composites can be densified by pressureless sintering without damage to the CNTs.  相似文献   

3.
Carbon nanotube (CNT)-reinforced macroporous alumina ceramics with tailored porosity were fabricated using hydrothermally synthesized (200 °C for 2 h) boehmite–CNT starting composite powders. Multi-wall CNTs were first mixed with a mixture of chemicals suitable to synthesize stoichiometric boehmite powders and then put in an autoclave. During hydrothermal synthesis, the formation of fine particles of boehmite was accompanied by the functionalization of CNTs. Subsequently, CNT–boehmite powders were used to produce bulk ceramics and sintering took place in a vacuum furnace at 1450 °C for 3 h for the formation of CNT-reinforced alumina ceramics. The pore network in various dimensions occurred as a consequence of the reconstructive transformation and dehydration of boehmite during the transformation to alumina. FEG-SEM and TEM analysis were used to determine the CNT distribution in the matrix, the morphology and size of particles, as well as the visual properties of the pores. The final macroporous alumina ceramics can be considered to be ideal for the separation and filtration of contaminants in liquid or air environment.  相似文献   

4.
《Ceramics International》2017,43(7):5715-5722
In this study, we report the electrical conductivity and thermal properties of Al2O3-SiC-CNT hybrid nanocomposites processed via ball milling (BM) and spark plasma sintering (SPS). The initial powders and consolidated samples were characterized using transmission electron microscopy (TEM) and field emission scanning electron microscopy (FE-SEM), respectively. A multifunction calibrator and a high-resolution digital multimeter were used to measure the electrical conductivity. The thermal properties were measured using a thermal constants analyser. The SiC and CNT-reinforced alumina hybrid nanocomposites exhibited a significant increase in their room-temperature electrical conductivity, which made them suitable for electrical discharge machining. The Al2O3-5SiC-2CNTs had a high electrical conductivity value of 8.85 S/m compared to a low value of 6.87×10−10 S/m for the monolithic alumina. The addition of SiC and CNTs to alumina decreased its room-temperature thermal properties. The increase in temperature resulted in a decrease in the thermal conductivity and thermal diffusivity but an increase in the specific heat of the monolithic alumina and the hybrid nanocomposites. These properties were correlated with the microstructure, and possible transport mechanisms were discussed.  相似文献   

5.
《Ceramics International》2017,43(15):12154-12161
We fabricated CuO/Al2O3 green compacts from plate-like Al2O3 and granular CuO powders by multi-press forming and investigated the alumina orientation using Lotgering's method. The results showed that Al2O3 particles preferentially aligned perpendicular to the pressure direction and the orientation degree increased as the forming pressure was increased. We proposed a model describing the movement of the alumina particles to explain the pressure effect on their orientation. The orientation calculation was in good agreement with those by Lotgering's method. Furthermore, we prepared the CuAlO2 compacts by regular or spark plasma sintering (SPS). However, the compacts sintered by SPS exhibited higher orientation degree and density than those produced by regular sintering. The electrical conductivity values of the orientation-controlled compacts sintered by SPS reached 770 S m−1 at 928 K, which was close to that of CuAlO2 single crystal. The power factor of the CuAlO2 compacts with highest orientation degree is as high as 5.95 × 10−5 W m−1 K−1 at 928 K. Therefore, we can conclude that orientation control is an effective method to enhance the thermoelectric performance of compact polycrystalline CuAlO2 bulks.  相似文献   

6.
Double-walled carbon nanotube/alumina composite powders with low carbon contents (2–3 wt.%) are prepared using three different methods and densified by spark plasma sintering. The mechanical properties and electrical conductivity are investigated and correlated with the microstructure of the dense materials. Samples prepared by in situ synthesis of carbon nanotubes (CNTs) in impregnated submicronic alumina are highly homogeneous and present the higher electrical conductivity (2.2–3.5 S cm−1) but carbon films at grain boundaries induce a poor cohesion of the materials. Composites prepared by mixing using moderate sonication of as-prepared double-walled CNTs and lyophilisation, with little damage to the CNTs, have a fracture strength higher (+30%) and a fracture toughness similar (5.6 vs 5.4   MPa m1/2) to alumina with a similar submicronic grain size. This is correlated with crack-bridging by CNTs on a large scale, despite a lack of homogeneity of the CNT distribution.  相似文献   

7.
《Ceramics International》2015,41(7):8936-8944
Monolithic B4C ceramics and B4C–CNT composites were prepared by spark plasma sintering (SPS). The influence of particle size, heating rate, and CNT addition on sintering behavior, microstructure and mechanical properties were studied. Two different B4C powders were used to examine the effect of particle size. The effect of heating rate on monolithic B4C was investigated by applying three different heating rates (75, 150 and 225 °C/min). Moreover, in order to evaluate the effect of CNT addition, B4C–CNT (0.5–3 mass%) composites were also produced. Fully dense monolithic B4C ceramics were obtained by using heating rate of 75 °C/min. Vickers hardness value increased with increasing CNT content, and B4C–CNT composite with 3 mass% CNTs had the highest hardness value of 32.8 GPa. Addition of CNTs and increase in heating rate had a positive effect on the fracture toughness and the highest fracture toughness value, 5.9 MPa m1/2, was achieved in composite with 3 mass% CNTs.  相似文献   

8.
The present study focuses on the synthesis of nanocomposite gamma alumina (γ-Al2O3), boehmite and multi- walled carbon nanotubes (MWCNTs) via a solvothermal procedure. The method is based on the ex situ filling of opened CNTs by liquid reactants. The microstructure and morphology of the synthesized nanocomposite Al2O3@CNTs/Al2O3 was characterized by high resolution transmission electron microscopy (HRTEM), transmission electron microscopy (TEM), field emission scanning electron microscopy (FESEM), energy-dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), Brunauer–Emmett–Teller (BET) and N2 adsorption–desorption analysis.Based on the experimental results, it was determined that the volume ratio of γ-Al2O3/MWCNTs and the surface tension of the solvent both greatly influence the morphology of the nanocomposite. The resultant MWCNTs were coated and filled by homogeneous and uniform boehmite and γ-Al2O3 layers and nanoparticles with thicknesses of 1–3 nm and diameters of 20–40 nm, when the volume ratio of γ-Al2O3/MWCNTS is 1 and the surface tension of the solvent is approximately 26 mN m?1 at 20 °C, far below the maximum value (100–200 mN m?1) for MWCNT filling.  相似文献   

9.
The sintering behaviour and activation energy of Y2O3 partially stabilised ZrO2 and ZrO2–CNT (0.5 and 2 vol%) composites was determined using spark plasma sintering (SPS) under isothermal conditions. The sintering activation energy for the Y2O3 partially stabilised ZrO2 was found to be 456 kJ/mol. The addition of 2 vol% CNTs reduced the sintering activation energy to 172 kJ/mol. The significant reduction of the activation energy with the addition of only 2 vol% CNTs is attributed to the formation of a percolating network of CNTs providing a lower energy diffusion pathway. The sintering mechanism was found to be grain boundary diffusion for all samples suggesting that the presence of CNTs does not change the sintering mechanism but does lower the activation energy for the rate limiting step in the sintering process.  相似文献   

10.
This paper describes the mechanical properties of carbon nanotube-reinforced Al2O3 nanocomposites fabricated by hot-pressing. The results showed that compared with monolithic Al2O3 the fracture toughness, hardness and flexural strength of the nanocomposites were improved by 94%, 13% and 6.4% respectively, at 4 vol.% CNT additions. For 10 vol.% CNT additions, with the exception of the fracture toughness, which was improved by 66%, a decrease in mechanical properties was observed when compared with those for monolithic Al2O3. The toughening mechanism is discussed, which is due to the uniform dispersion of CNTs within the matrix, adequate densification, and proper CNT/matrix interfacial connections.  相似文献   

11.
12.
In the present work, Al2O3–20 wt%Al2TiO5 composite was prepared from reaction sintering of alumina and titania nanopowders. The nano-sized raw powders were reconstituted into nanostructured particles by ball milling. Then, the nanostructured reconstituted powders were pressed and pressureless-sintered into bulk ceramics at 1300, 1400, 1500 °C for 2 h. The phase composition and microstructures of reconstituted powders and as-prepared ceramic composites were characterized by using X-ray diffractometer (XRD), scanning electron microscope (SEM), transmission electron microscope and energy-dispersive spectrometer (EDS). The microstructural analysis of the ceramic showed that the average grain size of the alumina–aluminium titanate composite increases with increasing the temperature. Also, SEM proved the existence of a proper interface between Al2TiO5 and Al2O3 grains and preferential distribution of aluminium titanate particles in the grain boundaries. XRD analysis indicated the absence of rutile titania in the sintered composite ensuring complete formation of aluminium titanate. The hardness of the samples sintered at 1300, 1400, 1500 °C were 4.8, 6.2 and 8.5 GPa, respectively.  相似文献   

13.
To suppress photoresist residues on carbon nanotubes (CNTs) resulting from photolithography, CNTs are covered by a sacrificial layer during photolithography. Using aluminum oxide (Al2O3) deposited by low temperature atomic layer deposition as the sacrificial layer, the fabricated suspended CNT field-effect transistors exhibit low on-state resistances as low as 91 kΩ and low gate hysteresis of 0.5 V in ambient air. The effectiveness of this technique in suppressing residues on CNTs was affirmed by atomic force microscopy, scanning electron microcopy, and micro Raman spectroscopy. The etchants of Al2O3, hydrofluoric acid and phosphoric acid, were found not to cause defects in CNTs while removing the sacrificial Al2O3 layer. With the protection of the Al2O3 layer, oxygen plasma ashing can be performed without causing further defects in CNTs, and the minimum thickness was determined to be between 9 nm and 17 nm. This simple and effective approach can be easily implemented in different resist-based lithography processes to fabricate carbon nano-devices that are free of resist residues.  相似文献   

14.
WC–40 vol% Al2O3 composites were prepared by high energy ball milling and the following two step hot pressing sintering (TSS). The tungsten carbide (WC) and commercial alumina (Al2O3) powders composed of amorphous Al2O3, boehmite (AlOOH) and χ-Al2O3 were used as the starting materials. The feasibility of two step sintering (TSS) method to WC–40 vol% Al2O3 composites was demonstrated, optimum TSS regime was discussed and phase transformation during TSS process was investigated. The results showed that both the pre-sintering at a proper first step temperature (T1) to obtain a critical initial density and isothermal hot pressing at an appropriate second step temperature (T2) to inhibit grain boundary migration (GBM) were of significant importance. When the as milled WC–40 vol% Al2O3 powders were hot pressed under TSS4 regime, a relative density of 99% and a grain size of 2.38 μm were obtained, an excellent Vickers hardness of 19.71 GPa was achieved, combining a fracture toughness of 12 MPa m1/2 with a flexural strength of 1285 MPa. Compared with the near full dense samples consolidated under CS1 regime (1540 °C for 90 min), the grain size decreased, the Vickers hardness, fracture toughness and flexural strength were all improved due to the refined microstructure and the transgranular fracture mode. The amorphous Al2O3, AlOOH and χ-Al2O3 were transformed to α-Al2O3 completely during the sintering process.  相似文献   

15.
Al2O3–Ni nanocomposites were fabricated by spark plasma sintering (SPS) using Ni nanoparticle produced by rotary chemical vapour deposition. Carbon-free Ni nanoparticles were prepared by reacting NiCp2 with O2 to form NiO and then reducing to Ni by H2 for 30 min at 823 K. The highest Ni content and grain size were 7.8 wt.% and 47.7 nm, respectively, using a NiCp2 supply rate (Rs) of 1.67 × 10−6 kg s−1. At a sintering temperature (TSPS) of 1573 K, the hardness of Al2O3–3.8 wt.% Ni was 20.5 GPa, around 1 GPa higher than that of monolithic Al2O3 sintered at the same temperature. The tensile strength of Al2O3–4.6 wt.% Ni was 170 MPa, 60 MPa higher than that of Al2O3 sintered at 1573 K.  相似文献   

16.
In situ synthesis of Al2O3–TiC nanocomposite powders from a mixture of titanium, graphite, and Al2O3 powders by high-energy ball milling (HEBM) and its consolidation through spark plasma sintering (SPS) were investigated. After being milled for 25 h at ambient temperature, the powder mixtures were mainly composed of homogeneous nanosized Al2O3 particle and amorphous TiC solid solution. The relative density of the samples consolidated by SPS technique in vacuum at 1480 °C for 4 min reached 99.2%. The final products exhibited very fine microstructure, and the grain sizes of Al2O3 and TiC were about 400 nm and 200 nm, respectively, with a flexure strength of 944 ± 21 MPa, Vickers hardness 21.0 ± 0.3 GPa, fracture toughness 3.87 ± 0.2 MPa m1/2, and electrical conductivity 1.2787 × 105 S m−1.  相似文献   

17.
It has previously been suggested that Al2O3/SiC nanocomposites develop higher surface residual stresses than Al2O3 on grinding and polishing. In this work, high spatial resolution measurements of residual stresses in ground surfaces of alumina and nanocomposites were made by Cr3+ fluorescence microspectroscopy. The residual stresses from grinding were highly inhomogeneous in alumina and 2 vol.% SiC nanocomposites, with stresses ranging from ~ ?2 GPa within the plastically deformed surface layers to ~ +0.8 GPa in the material beneath them. Out of plane tensile stresses were also present. The stresses were much more uniform in 5 and 10 vol% SiC nanocomposites; no significant tensile stresses were present and the compressive stresses in the surface were ~ ?2.7 GPa. The depth and extent of plastic deformation were similar in all the materials (depth ~ 0.7–0.85 μm); the greater uniformity and compressive stress in the nanocomposites with 5 and 10 vol% SiC was primarily a consequence of the lack of surface fracture and pullout during grinding. The results help to explain the improved strength and resistance to severe wear of the nanocomposites.  相似文献   

18.
《Ceramics International》2016,42(7):8620-8626
In this work a 19.58Li2O·11.10ZrO2·69.32SiO2 (mol%) glass–ceramic matrix was prepared and milled in order to determine its coefficient of thermal expansion (CTE) and to study how it is influenced by the addition of nanosized Al2O3 particles (1–5 vol%) and submicrometric Al2O3 particles (5 vol%). Comminution studies from the LZS parent glass frit showed that a powder with an adequate particle size (3.5 µm) is achieved after 120 min of dry milling followed by a second step of 60 h wet milling. The obtained LZS glass–ceramic samples (fired at 900 °C/30 min) showed an average relative density of ∼98% with zirconium silicate and lithium disilicate as main crystalline phases. Prepared composites with 1, 2.5 and 5 vol% of nanosized Al2O3 and 5 vol% submicrometric Al2O3 showed average relative densities varying from 97% to 94% as the alumina content increased. The formation of β-spodumene in the obtained composites leads to reduce the CTEs, whose values ranged from 9.5 to 4.4×10−6 °C−1. Composites with 5% nanosized alumina showed a CTE lower than that of the equivalent formulation with submicrometric alumina.  相似文献   

19.
《Ceramics International》2017,43(8):6105-6109
Alumina-MWCNT composite was densified by microwave sintering. CNTs were coated with boehmite nanoparticles to enhance their distribution in composite samples. Calcination temperature of composite powder was determined by TGA analysis (5 °C/min). Samples containing 0 and 1vol%CNT were produced by cold isostatic pressing at 180 MPa. Microwave sintering (1520 °C for 45 min) was conducted under the flow of argon. Phase analysis of the calcined composite powder showed complete transformation of boehmite into gamma-alumina. The relative densities were 99.3% and 98.1% for monolithic alumina and composite, respectively. CNT addition improved the fracture toughness of alumina by ~37%. SEM images showed that microwave sintering was successful. Also, coating CNTs improved their distribution in the alumina matrix.  相似文献   

20.
The co-production of hydrogen and carbon nanotubes (CNTs) from the decomposition of ethanol over Fe/Al2O3 at different temperatures and feeding rates of ethanol was investigated systematically. The results indicated that Fe/Al2O3 was a quite active catalyst for the co-production of hydrogen and CNTs and that its activity and stability depended strongly on the Fe loading. Among all catalysts tested, 10 mol% Fe/Al2O3 was the most effective catalyst based on the ratio of hydrogen production, the total H2 yield, and the quality of the CNTs formed. The efficiency of hydrogen production from ethanol decomposition over 10 mol% Fe/Al2O3 reached a maximum of ∼80% at 800 °C and the yield of CNTs with well-oriented growth and uniform diameter was 141%. In addition, the reaction of hydrogen and CNTs co-produced from ethanol decomposition was proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号