共查询到20条相似文献,搜索用时 15 毫秒
1.
The Vehicle Routing Problem with Simultaneous Pickup and Delivery (VRPSPD) is an extension to the classical Vehicle Routing Problem (VRP), where customers may both receive and send goods simultaneously. The Vehicle Routing Problem with Mixed Pickup and Delivery (VRPMPD) differs from the VRPSPD in that the customers may have either pickup or delivery demand. However, the solution approaches proposed for the VRPSPD can be directly applied to the VRPMPD. In this study, an adaptive local search solution approach is developed for both the VRPSPD and the VRPMPD, which hybridizes a Simulated Annealing inspired algorithm with Variable Neighborhood Descent. The algorithm uses an adaptive threshold function that makes the algorithm self-tuning. The proposed approach is tested on well-known VRPSPD and VRPMPD benchmark instances derived from the literature. The computational results indicate that the proposed algorithm is effective in solving the problems in reasonable computation time. 相似文献
2.
Lianxi Hong 《Computers & Operations Research》2012,39(2):151-163
This paper studies the dynamic vehicle routing problem with hard time windows (DVRPTW). The main study course of this problem was briefly reviewed. The solving strategy and algorithm of the problem are put forward. First of all, DVRPTW problem is decomposed into a series of static VRPTW. When and how to decompose the DVRP is the issue, that must be addressed. An event-trigger mechanism has been proposed and used to decompose the DVRPTW into a series of system delay-snapshots. The trigger event to be adopted is a new request arrival during the stable operation. And each snapshot is regarded as a static VRPTW. Whether each static VRPTW can quickly and efficiently be solved within a given time or a shorter time, i.e. the solving time is another issue for the DVRPTW. In the solving process, how to merge the latest requirement to the current solution is the third issue that must be solved. An improved large neighborhood search (LNS) algorithm is proposed to solve the static problem. Utilizing the remove-reinsert process of the LNS, the latest request nodes are regarded as a part of the removed nodes; these nodes can be inserted into the original or current solution in good time in the reinsertion process; meanwhile, its computing speed is high and effective for it does not need to resolve primal problem each time. Computational results of a large number of test problems, which cited from Solomon's static benchmarks and Lacker’s dynamic data set, show that our method is superior to other methods in most instances. 相似文献
3.
An improved multi-objective evolutionary algorithm for the vehicle routing problem with time windows
The vehicle routing problem with time windows is a complex combinatorial problem with many real-world applications in transportation and distribution logistics. Its main objective is to find the lowest distance set of routes to deliver goods, using a fleet of identical vehicles with restricted capacity, to customers with service time windows. However, there are other objectives, and having a range of solutions representing the trade-offs between objectives is crucial for many applications. Although previous research has used evolutionary methods for solving this problem, it has rarely concentrated on the optimization of more than one objective, and hardly ever explicitly considered the diversity of solutions. This paper proposes and analyzes a novel multi-objective evolutionary algorithm, which incorporates methods for measuring the similarity of solutions, to solve the multi-objective problem. The algorithm is applied to a standard benchmark problem set, showing that when the similarity measure is used appropriately, the diversity and quality of solutions is higher than when it is not used, and the algorithm achieves highly competitive results compared with previously published studies and those from a popular evolutionary multi-objective optimizer. 相似文献
4.
带时间窗车辆路径问题(VRPTW)是VRP的一种重要扩展类型,在蚂蚁算法思想基础上,设计用于求解该问题的混合改进型算法并求解Solomon标准数据库中的大量实例。经过大量数据测试并与其他启发式算法所得结果进行比较,获得了较好的效果。 相似文献
5.
王君 《计算机工程与应用》2013,49(2):24-28,66
研究了带时间窗的车辆路径问题(Vehicle Routing Problem with Time Windows,VRPTW),建立了数学模型,并设计了求解VRPTW的离散差分进化混合算法。算法采用随机车辆配载方法构造初始解,并通过构造新的变异和交叉算子进行改进。进一步,利用插入可行邻域和2-Opt可行邻域两种搜索可行解的邻域结构,引入禁忌搜索进一步进行局部搜索以提高算法的寻优能力。实验结果表明该算法是求解VRPTW的一种有效方法。 相似文献
6.
带时间窗和容量约束的车辆路径问题是车辆路径问题重要的扩展之一,属于NP难题,精确算法的求解效率较低,且对于较大规模问题难以在有限时间内给出最优解.为了满足企业和客户快速有效的配送需求,使用智能优化算法可以在有限的时间内给出相对较优解.研究了求解带容量和时间窗约束车辆路径问题的改进离散蝙蝠算法,为增加扰动机制,提高搜索速... 相似文献
7.
为解决逆向物流背景下的带时间窗的同时取送货车辆路径问题(VRPSPDTW),根据实际情况建立了相应的车辆路径问题模型,并采用模因算法进行求解。在模型的求解过程中使用引导弹射搜索(GES)生成初始种群,在种群进化的过程中采用边界组合交叉(EAX)产生子代,并采用多种邻域结构对子代进行修复、教育,以提高解的质量和算法的搜索效率。通过在Wang和Chen测试数据集上与遗传算法(GA)、并行模拟退火(p-SA)算法、离散布谷鸟(DCS)算法进行比较,实验结果显示:在小规模算例进行求解时,所提算法全部取得了当前最优解;对标准规模算例进行求解时,所提算法使70%的算例更新或获取了当前最优解,获得的最优求解算例结果与当前最优解相比有超过5%的提升,充分验证了所提算法求解VRPSPDTW的良好性能。 相似文献
8.
9.
The single vehicle routing problem with deliveries and selective pickups (SVRPDSP) is defined on a graph in which pickup and delivery demands are associated with customer vertices. The difference between this problem and the single vehicle routing problem with pickups and deliveries (SVRPPD) lies in the fact that it is no longer necessary to satisfy all pickup demands. In the SVRPDSP a pickup revenue is associated with each vertex, and the pickup demand at that vertex will be collected only if it is profitable to do so. The net cost of a route is equal to the sum of routing costs, minus the total collected revenue. The aim is to design a vehicle route of minimum net cost, visiting each customer, performing all deliveries, and a subset of the pickups. A mixed integer linear programming formulation is proposed for the SVRPDSP. Classical construction and improvement heuristics, as well as a tabu search heuristic (TS), are developed and tested on a number of instances derived from VRPLIB. Computational results show that the solutions produced by the proposed heuristics are near-optimal. There is also some evidence that the best solutions identified by the heuristics are frequently non-Hamiltonian and may contain one or two customers visited twice. 相似文献
10.
带时间窗车辆路径问题的文化基因算法 总被引:1,自引:0,他引:1
针对物流配送中带时间窗的车辆路径问题(Vehicle Routing Problem with Time Windows,VRPTW),建立了数学模型,并设计了求解VRPTW的文化基因算法。种群搜索采用遗传算法的进化模式,局部搜索采用禁忌搜索机制,并结合可行邻域结构避免对不可行解的搜索,以提高搜索效率。与单纯的遗传算法和禁忌搜索算法进行对比实验,表明该算法是求解VRPTW的一种有效方法。 相似文献
11.
在描述带软时间窗车辆调度问题数学模型基础上,提出将模拟退火算法与差分演化算法相结合的混合优化算法求解该问题。该算法利用了模拟退火算法具有的较强局部搜索能力和差分演化算法的强全局搜索能力,克服了差分演化算法的“早期收敛”问题。实验结果表明,该算法比单一的差分演化算法计算效率高,收敛速度快,计算结果也比较稳定,是解决车辆调度问题的有效方法。 相似文献
12.
王君 《计算机工程与科学》2013,35(1):124-129
针对物流配送中带时间窗的车辆路径问题,以最小化车辆使用数和行驶距离为目标,建立了多目标数学模型,提出了一种求解该问题的多目标文化基因算法。种群搜索采用遗传算法的进化模式和Pareto排序的选择方式,局部搜索采用禁忌搜索机制和存储池的结构,协调两者得到的Pareto非占优解的关系。与不带局部搜索的多目标遗传算法和单目标文化基因算法的对比实验表明,本文算法的求解质量较高。 相似文献
13.
蜂群算法在带时间窗的车辆路径问题中的应用* 总被引:1,自引:0,他引:1
根据带时间窗车辆路径问题的实际情况,通过考察车辆数和总行程两个目标函数,给出了该问题的一种新的算法——蜂群算法。通过计算若干benchmark问题,并将结果与其他算法相比较分析,验证了算法的有效性。目前关于蜂群算法的文献较少,故不仅是拓宽蜂群算法应用范围的有效尝试,同时也给带时间窗车辆路径问题提供了一种新的解决方法。 相似文献
14.
有时间窗车辆路径问题是当前物流配送系统研究中的热点问题,该问题具有NP难性质。难以求得最优解或满意解,在建立有时间窗车辆路径问题数学模型的基础上。设计了一种模仿动物捕食策略的捕食搜索算法.该算法利用控制搜索空间的限制大小来实现算法的局域搜索和全局搜索,具有良好的局部集中搜索和跳出局部最优的能力.通过实例计算,并与相关启发式算法比较.取得了满意的结果. 相似文献
15.
Vehicle routing problem with time windows (VRPTW) is a well-known combinatorial problem. Many researches have presented meta-heuristics are effective approaches for VRPTW. This paper proposes a hybrid approach, which consists of ant colony optimization (ACO) and Tabu search, to solve the problem. To improve the performance of ACO, a neighborhood search is introduced. Furthermore, when ACO is close to the convergence Tabu search is used to maintain the diversity of ACO and explore new solutions. Computational experiments are reported for a set of the Solomon’s 56 VRPTW and the approach is compared with some meta-heuristic published in literature. Results show that considering the tradeoff of quality and computation time, the hybrid algorithm is a competitive approach for VRPTW. 相似文献
16.
针对多中心半开放式送取需求可拆分的车辆路径问题,构建了以车辆配送距离最短为目标的多中心半开放式送取需求可拆分的数学模型。设计大变异邻域遗传算法进行求解,采用二维染色体编码及顺序交叉策略,同时运用大变异策略和邻域搜索策略提高算法全局和局部的寻优能力,通过算例对比验证了所提模型与算法的有效性。算例实验表明,大变异邻域遗传算法在求解多中心物流配送车辆路径问题上求解质量较优、求解效率较高、求解结果较为稳定,同时验证了联合配送下多中心半开放式送取需求可拆分的配送模式优于独立配送下单中心送取需求可拆分的配送模式。研究成果不仅拓展了车辆路径问题,还可为相关快递物流企业配送优化提供决策参考。 相似文献
17.
18.
The vehicle routing problem with deliveries and pickups is one of the main problems within reverse logistics. This paper focuses on an important assumption that divides the literature on the topic, namely the restriction that all deliveries must be completed before pickups can be made. A generalised model is presented, together with a mathematical formulation and its resolution. The latter is carried out by adopting a suitable implementation of the reactive tabu search metaheuristic. Results show that significant savings can be achieved by allowing a mixture of delivery and pickup loads on-board and yet not incurring delays and driver inconvenience. 相似文献
19.
The vehicle routing problem (VRP) is a well-known combinatorial optimization issue in transportation and logistics network systems. There exist several limitations associated with the traditional VRP. Releasing the restricted conditions of traditional VRP has become a research focus in the past few decades. The vehicle routing problem with split deliveries and pickups (VRPSPDP) is particularly proposed to release the constraints on the visiting times per customer and vehicle capacity, that is, to allow the deliveries and pickups for each customer to be simultaneously split more than once. Few studies have focused on the VRPSPDP problem. In this paper we propose a two-stage heuristic method integrating the initial heuristic algorithm and hybrid heuristic algorithm to study the VRPSPDP problem. To validate the proposed algorithm, Solomon benchmark datasets and extended Solomon benchmark datasets were modified to compare with three other popular algorithms. A total of 18 datasets were used to evaluate the effectiveness of the proposed method. The computational results indicated that the proposed algorithm is superior to these three algorithms for VRPSPDP in terms of total travel cost and average loading rate. 相似文献
20.
The vehicle routing problem with deliveries and pickups is a challenging extension to the vehicle routing problem that lately
attracted growing attention in the literature. This paper investigates the relationship between two versions of this problem,
called “mixed” and “simultaneous”. In particular, we wish to know whether a solution algorithm designed for the simultaneous
case can solve the mixed case. To this end, we implement a metaheuristic based on reactive tabu search. The results suggest
that this approach can yield good results. 相似文献