共查询到19条相似文献,搜索用时 62 毫秒
1.
针对非均匀背景下红外小目标检测率低的问题,本文引入人眼视觉系统对比度机制,提出一种基于改进高提升滤波(improved high boost filter,IHBF)的增强局部对比度红外小目标检测方法。首先,根据小目标的频域特性,通过IHBF运算提升高频信号同时,剔除含有背景的低频信号;然后,提出增强局部对比度方法构建比差联合形式的算子,进一步增强目标与背景间的对比度,获得最优显著图;最后,采用自适应阈值分割技术获取真实目标。仿真结果表明:相对于现有的局部对比度算法,所提方法在检测率、虚警率等方面更具优势,是非均匀背景下检测红外小目标的一种有效方法。 相似文献
2.
鲁棒有效的弱小目标检测算法是光电跟踪系统成功的关键.本文针对空中远距离红外弱小目标检测的实际问题,在人类视觉对比机制基础上提出了一种检测率高、误报率低、处理时间短的红外小目标检测方法.首先,利用基于恒虚警率的Top-hat滤波和自适应阈值操作对原始图像进行预处理,得到疑似目标区域,该步骤可大大减少计算时间,同时保持恒定的虚警概率和可预测的检测概率;然后,定义了一种新颖有效的局部对比度测量算子,并引入图像局部的自相似性计算局部显著图,该过程不仅可以增强图像目标的视觉显著性,同时还可以抑制噪声,提高区域目标的信噪比;最后,在显著图基础上,利用简单的阈值操作就可以获得真实目标.定性定量实验结果表明,本文提出的方法与4种现有检测算法相比,具有更高的检测率、更低的虚警率和更少的检测时间,是复杂背景下红外弱小目标检测的有效方法. 相似文献
3.
复杂背景条件下红外小目标检测是红外自动寻的、红外预警系统的关键技术和研究热点之一。为了能有效地检测出小目标,对红外图像中的小目标与背景特性进行了分析,在充分利用小目标与其局部背景差异的基础上,提出一种基于局部灰度均值确定红外小目标尺寸和位置信息的算法。首先,给出判断像元属于小目标的必要条件,该条件判定图像中哪些像元可能属于红外小目标;其次,基于可能属于小目标的像元给出小目标可能的尺寸值;再次,对所得结果进行优化,排除虚警;最后,根据前三阶段所得结果确定小目标的尺寸和位置。Matlab 仿真结果表明,对复杂云层背景的红外图像,Top-Hat 检测算法虽然检测速度快,但当虚警和目标的灰度值相等时不能很好地对目标进行检测;新算法在选择合适参数的基础上能准确给出目标的位置信息,并能较好地估算小目标尺寸,然而新算法在检测速度上仍有待进一步提高。 相似文献
4.
针对传统局部对比度算法在强杂波背景下,容易引入虚警目标的不足,提出了一种空域加权局部对比度的红外小目标检测算法。首先,利用具有中心激励和侧向抑制性的二维高斯差分滤波器,抑制了原始图像大部分的背景杂波,以提高图像的信噪比;然后,利用目标均值与邻域的中值的比值进行局部对比度测量,再用目标各区域的灰度均值差加权局部对比度,生成目标显著图;最后,对显著图进行自适应阈值分割,检测出真实目标。实验结果表明,与其他几种检测方法对比,该算法不仅具有较高的信躁比增益和背景抑制因子,还具有较高的检测率和较低的虚警率,是一种有效的红外小目标检测方法。 相似文献
5.
天空背景下的红外弱小目标检测技术较为成熟,但在近地复杂背景下,红外弱小目标的检测存在准确率不高、虚警目标多、实时性差的问题。针对以上问题,该文提出一种基于改进顶帽变换的红外弱小目标检测算法(OTHOLCM)。该算法采用基于改进顶帽变换的图像预处理算法(OTH),通过对不同灰度值的图像采取不同的策略针对性地处理图像,达到目标增强、背景抑制的效果。并在此基础上,采用基于改进多尺度局部对比度的红外弱小目标检测算法(OLCM),通过针对目标尺寸特点进行尺度设计,使得在保证算法实时性的基础上扩大目标尺寸检测范围。实验证明:OTHOLCM算法可以保证实时性并明显提高目标检测准确率、减少虚警目标数量。与3层模板局部差异度量算法(TTLDM)、基于边角感知的时空张量模型(ECASTT)等先进算法相比,OTHOLCM算法可使真阳性率分别提高近79%, 61%,假阳性率分别降低近77%, 73%,目标检测速度达到每秒25帧。 相似文献
6.
Top-Hat的检测性能受限于固定单一的结构元素,导致对复杂背景的抑制能力差。针对该方法的不足,提出两种具有递进关系的改进Top-Hat算法。首先依据小目标与其邻域灰度值差异,改进了Top-Hat变换,提出了一种具有双结构元素的Top-Hat算法,分别为膨胀和腐蚀操作设计了各自的结构元素,并且调整了开运算的运算顺序,以提高对红外小目标的检测性能。在此基础上,又提出一种基于局部对比度的自适应双结构Top-Hat红外小目标检测方法,通过计算局部对比度得到显著图,获得先验信息,自适应地改变双结构元素的大小,利用目标区域及其邻域的灰度值差异来抑制背景和增强目标。与同类方法和非同类方法进行对比实验研究,结果表明,所提基于局部对比度的自适应Top-Hat方法在5种评价指标中均表现突出。 相似文献
7.
针对复杂云层背景下红外小目标检测的虚警现象和实时性要求,提出一种基于结构张量筛选和局部对比度分析的新算法。结合目标区域结构张量最大特征值大于其他背景区域结构张量最大特征值的特点,滤除大部分非目标区域,保留少量可疑区域,再对可疑区域进行局部对比度计算,能够增强目标、抑制残留背景,并有效减少计算量。算法步骤如下:首先,在滑动窗口捕获的局部图像区域内构建结构张量矩阵,将最大特征值大于特定阈值的区域标记为可疑区域;然后,对可疑区域进行比差联合型局部对比度计算,生成显著度图;最后,利用自适应阈值分割实现小目标的分离。实验结果表明:该算法在复杂云层背景下具有更高的检测率、更低的虚警率以及更少的运行时间。 相似文献
8.
9.
10.
针对复杂云层背景下红外小目标检测的虚警现象和实时性要求,提出一种基于结构张量筛选和局部对比度分析的新算法。结合目标区域结构张量最大特征值大于其他背景区域结构张量最大特征值的特点,滤除大部分非目标区域,保留少量可疑区域,再对可疑区域进行局部对比度计算,能够增强目标、抑制残留背景,并有效减少计算量。算法步骤如下:首先,在滑动窗口捕获的局部图像区域内构建结构张量矩阵,将最大特征值大于特定阈值的区域标记为可疑区域;然后,对可疑区域进行比差联合型局部对比度计算,生成显著度图;最后,利用自适应阈值分割实现小目标的分离。实验结果表明:该算法在复杂云层背景下具有更高的检测率、更低的虚警率以及更少的运行时间。 相似文献
11.
红外弱小目标检测是图像处理的难点之一,许多研究人员提出了不少检测方法.针对复杂背景与强杂波干扰下图像信杂比(Signal-to-Clutter Ratio,SCR)低造成的目前检测方法易受伪目标干扰、虚警率高的问题,提出了一种多信息融合的红外弱小目标检测算法.首先,构建八向局部灰度残差信息图;其次,设计一个滑动窗口遍历整个图像,将图像分为一系列局部图像块,对局部图像块的强度均值进行约束,获得局部强度均值约束信息图;然后,将局部图像块进一步划分为12个方向块,对每个方向块中像素的梯度方向进行约束,获取梯度方向约束信息图;最后,上述3个信息图像通过点积运算得到最终显著图,并利用阈值分割实现弱小目标的分离.将该算法与3种其它不同算法从信杂比增益(Signal-to-Clutter Ratio Gain,SCRG)、背景抑制因子(Background Suppression Factor,BSF)以及检测率与虚警率的接受者操作特征(Receiver Operating Characteristic,ROC)曲线方面进行对比.实验结果表明:该算法具有更高的SCRG、BSF和ROC曲线下面积(Area Under the Curve,AUC),不仅能有效地抑制背景杂波、剔除伪目标,而且能准确地检测出红外弱小目标,具有较高的检测率. 相似文献
12.
在红外成像探测系统中,对红外图像背景进行有效的抑制是准确检测出弱小目标的前提条件.基于目标在空域局部灰度稳定和时域运动连续的约束,提出了一种基于时空域滤波的红外弱小目标背景抑制新方法.首先,利用引导滤波保存图像细节和时域偏微分方程提取图像中突变区域的优势,实现对图像空域与时域中平稳和强起伏不同特征复杂背景进行抑制处理;然后,将时空域背景抑制结果利用相与操作算子处理完成对高度类似弱小目标信号的剔除;最后,为恢复前期抑制结果中丢失的目标信息,利用时空域融合结果作为引导图像进行进一步优化处理,得到最终背景抑制结果.仿真实验采用两组低信杂比运动弱小目标红外图像序列进行方法验证,并将该方法与几种背景抑制方法进行了比较,实验结果表明:该方法无论从主观视觉还是客观评价指标上均优于其他几种方法. 相似文献
13.
复杂背景下的红外图像通常存在信噪比低、邻近像素灰度变化不明显以及易被杂波信号和噪声干扰的特点,导致红外小目标检测困难。为解决上述问题,提出一种基于特征显著性融合的红外小目标检测算法。首先,在空间域中利用目标与其局部背景灰度差异来计算得到灰度显著图,在频域中结合谱残差计算得到背景抑制后的频域显著图;其次,将灰度显著图和频域显著图归一化后通过哈达玛乘积相互融合;最后,通过自适应阈值分割并使用Unger滤波器剔除较小的噪声点,从而提取出目标区域。实验结果表明,所提算法对图像的信噪比有了数十倍的提升,对背景抑制效果显著,并有着检测率高和虚警率低的优点,是一种有效的小目标检测算法。 相似文献
14.
15.
16.
探索了一种结合目标特性和局部背景类别预测的红外小目标检测算法。具体研
究了红外天空小目标检测中屏蔽地物虚警的问题。在复杂的红外场景中,地面物体由于复杂多变造成
的虚警会严重影响系统的探测灵敏度和鲁棒性。如果仅从目标特性入手,难以滤除地物虚警。首先利
用新 Top Hat 变换提取出潜目标。然后,对每个潜目标,一方面利用目标特性获得一种潜目标为真实目标的
可能性度量,另一方面考虑潜目标一定大小的邻域背景,根据对背景类别(天空或者地物)的预测获得
另一种可能性度量。最后,结合两种度量滤除虚假目标。实验表明,相比仅考虑目标特性的算法,本文
算法的探测性能有了很大提升。 相似文献
17.
18.
19.
形态学算法在红外小目标检测上具有良好的性能,先对该算法的处理过程进行了分析,结合实际拍摄的红外小目标图像研究发现,算法在处理过程中存在很多不必要的计算,因此从提高算法的实时性出发,提出了一种基于方差标记的形态学方法.该方法首先计算图像每个像素的局部方差,然后由方差根据阈值判断条件对图像进行标记,标记完后再通过形态学算法对标记的部分进行Top-hat运算.理论分析和仿真实验表明,该方法能够极大的提高形态学的检测效率,而且对算法的检测性能有一定的提高. 相似文献