共查询到20条相似文献,搜索用时 15 毫秒
1.
曾雯靓 《网络安全技术与应用》2021,(4):109-112
随着互联网的快速发展,社交网络不断影响着人们的生活方式,其使用率也在不断提高.随着社交网络的发展以及其多样性的特征,用户可能同时具有多个社交网络的账号.如果能够识别出同一用户在不同社交网络中的账号,就能够整合出该用户较为全面的信息,从而挖掘出一些隐藏的信息,对于好友推荐、广告推荐、信息扩散的研究也很有帮助.目前用户识别... 相似文献
2.
随着互联网的普及和不断发展,用户通过多个社交网络进行社交活动,使用社交网络带来的丰富内容和服务.通过识别出不同社网上的同一用户,可以有助于进行用户推荐、行为分析、影响力最大化,因而显得尤为重要.已有方法主要基于用户的结构特征和属性特征来识别匹配用户,大多仅考虑局部结构,并且受已知匹配用户数量的限制.基于此,本文提出了一种基于全视角特征结合众包的跨社交网络用户识别方法(OCSA).首先,利用众包来提高已知匹配用户的数量,接着,应用全视角特征评价用户的相似度,以提升用户匹配的准确性,最后,利用两阶段的迭代式匹配方法完成用户识别工作.实验结果表明该文提出的算法可显著提高用户识别的召回率和准确率,并解决了已知匹配用户数量不足时的识别问题. 相似文献
3.
针对跨社交网络的同一用户识别问题,提出了一种综合用户兴趣、写作风格和档案属性的识别方法.通过在这3种不同的特征维度下分别判定用户关系,然后综合判定结果,提高同一用户识别准确性.其中,用户兴趣分为静态兴趣和动态兴趣,静态兴趣采用TextRank算法从用户背景信息中提取,动态兴趣则利用主题模型从用户发表的文本内容中挖掘出随... 相似文献
4.
从局部极小到全局最优 总被引:2,自引:0,他引:2
所有控制决策问题本质上均可归结为优化问题,但大部分存在多极小,因此如何摆脱局部极小以实现全局最优一直是理论界和工程界关注的热点课题。文章总结了若干全局优化技术的机制和特点,包括模拟退火、进化计算、禁忌搜索、变邻域搜索、噪声方法、巢分区、混沌搜索、隧道方法、平滑技术、混合算法等,力求为优化研究人员了解全局优化技术和开发高效算法提供指导。 相似文献
5.
针对现有算法对用户兴趣在跨网络用户身份识别中作用的忽视以及时间复杂度高的问题,提出了基于用户兴趣的跨社交网络用户身份识别算法(UI-UI)。首先利用分块思想对用户节点进行初筛选,以提升算法效率、降低时间复杂度;其次,根据用户产生内容(UGC)和用户社交关系对用户兴趣进行建模,并计算兴趣相似度作为身份识别的依据;最后利用半监督学习的方法进行跨网络用户身份识别。通过在真实社交网络中进行实验,结果表明UI-UI算法能有效识别跨网络用户,且准确率和召回率稳定,运行时间显著减少。 相似文献
6.
随着互联网的迅速发展,社交网络已经成为人们日常生活中的重要社交工具。然而,社交网络中的异常用户层出不穷,其危害也日益严重。因此,识别和检测社交网络中的异常用户对提高用户体验、保持良好的网络环境等具有重要作用。介绍了不同类型的社交网络异常用户,并对每种不同类型异常用户的研究进展进行了介绍;对异常检测方法进行了综述,将社交网络中的异常检测技术分为分类、聚类、统计、信息论、混合、图六大类,并对这六类技术各自的优缺点进行了比较,有助于人们了解社交网络中的异常用户、异常检测技术,为解决异常问题提供了思路。 相似文献
7.
为提高目标识别的准确性和快速性,提出了基于全局和局部特征对目标识别的方法。基于颜色直方图提取全局颜色特征,利用多尺度空间来表达目标的局部特征,最后将全局和局部特征进行数据融合得到图像的识别结果。实验结果表明,该方法很好地结合了目标的整体和局部信息,能有效地识别目标,且识别效果优于单一的全局特征和局部特征的识别效果。 相似文献
8.
蚂蚁群优化算法(ant colony optimization, ACO)是一种元启发式方法,其中一群相对简单的Agent(人工蚂蚁)相互合作,求解离散优化问题.对第1个蚂蚁算法(ant system)进行扩展的大量研究表明,采用精英策略可以较好地改善算法性能.探讨了全局最优解和局部最优解间的平衡与解空间搜索的intensification,exploration的关系,及其对ACO算法性能的影响.实验结果表明,合理利用全局和局部最优解,可以显著提高ACO算法的性能. 相似文献
9.
跨社交网络用户匹配技术可以融合多平台用户数据,从而实现更多元的应用,现有基于签到的社交网络用户匹配研究,忽略了多源社交网络签到数据的失衡性,导致算法在真实数据集下匹配精度下降的问题。针对此问题,提出一种基于用户签到的跨社交网络用户匹配方法。通过网格聚类算法对用户签到数据进行粗粒度化和过滤,选择出潜在相关性强的签到数据;从这些签到数据中提取时空特征,计算出不同属性相似度;通过优化多属性相似度的权重分配,综合计算用户匹配分。在多组数据集上的实验结果表明,所提出方法在签到数据失衡情况下的有效性。 相似文献
10.
11.
传统的局部上下文分析其应用效果高度依赖于初次检索的结果。针对此局限,通过对用户查询日志的统计分析和过滤,得到用户最可能感兴趣的文章,代替初始检索得到的N篇文章,作为查询扩展词来源文档集,用局部上下文分析方法计算词间相关度。实验结果表明,该方法能够较大地提高查询精度。 相似文献
12.
13.
针对无线泛在网络中标识技术存在的问题,给出了解决思路,从无线泛在网络全局用户标识关联模型、标识系统扩展、用户标识设计、标识信息储存设计、标识的更新与解析、标识信息存储设计优化等方面展开设计研究,提出了无线泛在网络全局用户标识方案,为无线泛在网络发展提供了参考。 相似文献
14.
目的 点云目标识别流程分为离线与在线阶段。离线阶段基于待识别目标的CAD模型构建一个模型库,在线基于近邻查找完成识别。本文针对离线阶段,提出一种新的模型库构建方法。方法 首先将CAD模型置于一个二十面体中心,使用多个虚拟相机获取CAD模型在不同视角下的点云;然后将每个不同视角下的点云进行主成分分析并基于主成分分析的结果从多个选定的方向将点云切分为多个子部分,这些子部分包含点云的全局及局部信息;接着对每个子部分使用聚类算法获取其最大聚类,去除离群点;最后结合多种方式删减一些冗余聚类,减小模型库规模。结果 在多个公开数据集上使用多种点云描述子进行对比实验,识别结果表明,相对于传统的模型库构建方法,基于本文方法进行识别正确率更高,在某些点云描述子上的识别正确率提升达到10%以上。结论 通过将CAD模型在不同视角下点云的全局与局部信息都加入模型库中,本文提出的模型库构建方法可有效提高点云目标识别正确率,改善了场景目标发生遮挡时,近邻查找识别精度不高的问题。 相似文献
15.
针对主观分配属性项权重的方法忽视了各属性项在身份匹配的应用领域中具有的特殊含义与作用,导致识别准确率低的问题,提出了一种基于信息熵的跨网络用户身份识别算法(IE-MSNUIA)。首先,该算法分析不同属性项的数据类型及物理含义,相应地采用不同的相似度计算方法;然后根据各属性的信息熵值赋予权值,进而充分挖掘各属性的潜在信息;最后融合各个属性进行决策判定账号是否匹配。理论分析和实验结果表明,与机器学习算法和主观赋权算法相比,所提算法的各个性能参数值均有所提升,在不同数据集上的平均准确率可以达到97.2%,平均召回率达到94.1%,平均综合性能值达到95.6%,可以准确地识别出用户在不同社交网络中的多个账号身份。 相似文献
16.
目的 人体目标再识别的任务是匹配不同摄像机在不同时间、地点拍摄的人体目标。受光照条件、背景、遮挡、视角和姿态等因素影响,不同摄相机下的同一目标表观差异较大。目前研究主要集中在特征表示和度量学习两方面。很多度量学习方法在人体目标再识别问题上了取得了较好的效果,但对于多样化的数据集,单一的全局度量很难适应差异化的特征。对此,有研究者提出了局部度量学习,但这些方法通常需要求解复杂的凸优化问题,计算繁琐。方法 利用局部度量学习思想,结合近几年提出的XQDA(cross-view quadratic discriminant analysis)和MLAPG(metric learning by accelerated proximal gradient)等全局度量学习方法,提出了一种整合全局和局部度量学习框架。利用高斯混合模型对训练样本进行聚类,在每个聚类内分别进行局部度量学习;同时在全部训练样本集上进行全局度量学习。对于测试样本,根据样本在高斯混合模型各个成分下的后验概率将局部和全局度量矩阵加权结合,作为衡量相似性的依据。特别地,对于MLAPG算法,利用样本在各个高斯成分下的后验概率,改进目标损失函数中不同样本的损失权重,进一步提高该方法的性能。结果 在VIPeR、PRID 450S和QMUL GRID数据集上的实验结果验证了提出的整合全局—局部度量学习方法的有效性。相比于XQDA和MLAPG等全局方法,在VIPeR数据集上的匹配准确率提高2.0%左右,在其他数据集上的性能也有不同程度的提高。另外,利用不同的特征表示对提出的方法进行实验验证,相比于全局方法,匹配准确率提高1.3%~3.4%左右。结论 有效地整合了全局和局部度量学习方法,既能对多种全局度量学习算法的性能做出改进,又能避免局部度量学习算法复杂的计算过程。实验结果表明,对于使用不同的特征表示,提出的整合全局—局部度量学习框架均可对全局度量学习方法做出改进。 相似文献
17.
基于度中心性局部扩展的社区划分算法 总被引:1,自引:0,他引:1
社交网络中社区划分问题的研究不仅为网络演化、信息传播和影响力分析等方向提供了理论依据,而且在好友推荐、商业营销和舆情检测等领域有着重要应用价值.针对基于贪婪优化的社区划分算法AGSO不稳定问题,提出了一种基于度中心性局部扩展的社区划分算法(DCLE).首先计算所有节点的度中心性(Degree Centrality),其次将链接两端节点度中心性之和作为链接的度中心性并降序排序,其后将度中心性最大链接作为初始链接加入网络,最后基于贪婪策略局部扩展并迭代,得到最终的社区划分结果.通过在公开的数据集和大型人工网络上进行实验,结果表明DCLE算法能快速且准确地发掘社区结构,稳定性得到显著提升. 相似文献
18.
19.
为识别出不同社交网络平台中属于同一自然人的账号,提出了一种基于用户关系的跨社交网络用户身份关联方法。首先,设计了基于网络表示学习的用户关系提取模块,将大规模用户关系转换至低维向量空间进行表示;然后,针对异构信息网络改进了传统网络表示学习算法,提出了CSN_LINE算法,实现融合跨社交网络先验关联关系的网络表示;最后,构建了基于多层感知机的用户身份关联模型。实验结果表示,提出的方法与目前先进的方法相比,综合指标F1值和正确率的提高均超过12%,证明了该方法的合理性和有效性。 相似文献
20.
深入分析无线传感器网络中的目标搜索问题,比较了现有的几种搜索策略,重点关注最优搜索理论在无线传感器网络目标搜索中的应用。针对大规模传感器网络,提出了局部最优搜索改进模型,新模型在基本探测函数基础上,针对大规模传感器网络实际,对参数进行了重要补充与完善,使得改进后最优搜索模型在与改进前的最后搜索比较中显示出较明显的优势。 相似文献