首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
This paper presents a particle swarm optimization with differentially perturbed velocity hybrid algorithm with adaptive acceleration coefficient (APSO-DV) for solving the optimal power flow problem with non-smooth and non-convex generator fuel cost characteristics. The APSO-DV employs differentially perturbed velocity with adaptive acceleration coefficient for updating the positions of particles for the particle swarm optimization. The feasibility of the proposed approach was tested on IEEE 30-bus and IEEE 118-bus systems with three different objective functions. Several cases were investigated to test and validate the robustness of the proposed method in finding the optimal solution. The effectiveness of the proposed approach was tested including contingency also. Simulation results demonstrate that the APSO-DV provides superior results compared to classical DE, PSO, PSO-DV and other methods recently reported in the literature. An innovative statistical analysis based on central tendency measures and dispersion measures was carried out on the bus voltage profiles and voltage stability indices.  相似文献   

2.
A major role is played by the analysis of power system security in heightening system security and in system collapse condition avoidance. This article presents a cutting edge mechanism which is devised applying transmission line loadings as well as variance in bus voltage magnitude. The use of flexible alternating current transmission systems devices improves the objectives of generation fuel charges in addition to the severity index proposed which were investigated considering the contingency circumstances of generator(s) or/and transmission channel(s). To boost system security in spite of contingency circumstances in the existence of unified power flow controller or UPFC, it would be most appropriate to pinpoint a most advantageous position to install aforementioned device. We propose a model of UPFC where power insertion is done by using voltage source. Also a procedure to incorporate the same and a strategy to find optimum position has been proposed which uses line overload sensitivity indices. This work mainly focused on establishment of available transfer capability on the heavily congested line. The proposed congestion management scheme alleviates the heavy stress in transmission line and provides an ample corridor for the power to flow. Biogeography-based optimization or BBO in short, is a technique which is a growing recognized optimization method which has been lucratively engaged in solving intricate optimization problem in dissimilar fields. The BBO provides better results than the metaheuristic counter parts such as Genetic Algorithm and Particle Swarm Optimization. The effectiveness of proposed BBO has been tested on standard IEEE 30 bus system and the results are compared with classic methods and other metaheuristic methods. This is established through the MATLAB package. Improved bus voltage profile was also attained and it can be inferred from the outcome that the prospective approach can drastically enhance security of power system when comparing with other optimization methods.  相似文献   

3.
This paper presents a new method for enhancing power system security, including a remedial action, using an artificial neural network (ANN) technique. The deregulation of electricity markets is still an essential requirement of modern power systems, which require the operation of an independent system driven by economic considerations. Power flow and contingency analyses usually take a few seconds to suggest a control action. Such delay could result in issues that affect system security. This study aims to find a significant control action that alleviates the bus voltage violation of a power system and to develop an automatic data knowledge generation method for the adaptive ANN. The developed method is proved to be a steady-state security assessment tool for supplying possible control actions to mitigate an insecure situation resulting from credible contingency. The proposed algorithm is successfully tested on the IEEE 9-bus and 39-bus test systems. A comparison of the results of the proposed algorithm with those of other conventional methods reveals that an ANN can accurately and instantaneously provide the required amounts of generation re-dispatch and load shedding in megawatts.  相似文献   

4.
In this paper, a newly surfaced nature-inspired optimization technique called moth-flame optimization (MFO) algorithm is utilized to address the optimal reactive power dispatch (ORPD) problem. MFO algorithm is inspired by the natural navigation technique of moths when they travel at night, where they use visible light sources as guidance. In this paper, MFO is realized in ORPD problem to investigate the best combination of control variables including generators voltage, transformers tap setting as well as reactive compensators sizing to achieve minimum total power loss and minimum voltage deviation. Furthermore, the effectiveness of MFO algorithm is compared with other identified optimization techniques on three case studies, namely IEEE 30-bus system, IEEE 57-bus system and IEEE 118-bus system. The statistical analysis of this research illustrated that MFO is able to produce competitive results by yielding lower power loss and lower voltage deviation than the selected techniques from literature.  相似文献   

5.
This paper presents the application of immune algorithm (IA) to find optimal location of unified power flow controller (UPFC) to achieve optimal power flow (OPF) and congestion management. Objective function in the OPF, that is to be minimized, is the overall cost functions, which includes the total active and reactive production cost function of the generators and installation cost of UPFCs. The OPF constraints are generators, transmission lines and UPFCs limits. In power system, it may not always be possible to dispatch all of the contracted power transactions due to congestion of the transmission corridors. We propose IA method to minimize the objective function under all equality and inequality constraints. Simulations are performed on 4-bus, IEEE 14-bus and IEEE 30-bus test systems for optimal location of UPFC and the results obtained are encouraging and will be useful in electrical restructuring.  相似文献   

6.
Distributed generator (DG) is recognized as a viable solution for controlling line losses, bus voltage, voltage stability, etc. and represents a new era for distribution systems. This paper focuses on developing an approach for placement of DG in order to minimize the active power loss and energy loss of distribution lines while maintaining bus voltage and voltage stability index within specified limits of a given power system. The optimization is carried out on the basis of optimal location and optimal size of DG. This paper developed a new, efficient and novel krill herd algorithm (KHA) method for solving the optimal DG allocation problem of distribution networks. To test the feasibility and effectiveness, the proposed KH algorithm is tested on standard 33-bus, 69-bus and 118-bus radial distribution networks. The simulation results indicate that installing DG in the optimal location can significantly reduce the power loss of distributed power system. Moreover, the numerical results, compared with other stochastic search algorithms like genetic algorithm (GA), particle swarm optimization (PSO), combined GA and PSO (GA/PSO) and loss sensitivity factor simulated annealing (LSFSA), show that KHA could find better quality solutions.  相似文献   

7.
This paper presents an evolving ant direction particle swarm optimization algorithm for solving the optimal power flow problem with non-smooth and non-convex generator cost characteristics. In this method, ant colony search is used to find a suitable velocity updating operator for particle swarm optimization and the ant colony parameters are evolved using genetic algorithm approach. To update the velocities for particle swarm optimization, five velocity updating operators are used in this method. The power flow problem is solved by the Newton–Raphson method. The feasibility of the proposed method was tested on IEEE 30-bus, IEEE 39-bus and IEEE-57 bus systems with three different objective functions. Several cases were investigated to test and validate the effectiveness of the proposed method in finding the optimal solution. Simulation results prove that the proposed method provides better results compared to classical particle swarm optimization and other methods recently reported in the literature. An innovative statistical analysis based on central tendency measures and dispersion measures was carried out on the bus voltage profiles and voltage stability indices.  相似文献   

8.
《Applied Soft Computing》2007,7(3):722-727
The continual increase in demand for electrical energy and the tendency towards maximizing economic benefits in power transmission system has made real-time voltage security analysis an important issue in the operation of power system. The most important task in real time security analysis is the problem of identifying the critical contingencies from a large list of credible contingencies and rank them according to their severity. This paper presents an artificial neural network (ANN)–based approach for contingency ranking. A set of feed forward neural networks are developed to estimate the voltage stability level at different load conditions for the selected contingencies. Maximum L-index of the load buses in the system is taken as the indicator of voltage instability. A mutual information-based method is proposed to select the input features of the neural network. The effectiveness of the proposed method has been demonstrated through contingency ranking in IEEE 30-bus system. The performance of the developed model is compared with the unified neural network trained with the full feature set. Simulation results show that the proposed method takes less time for training and has good generalization abilities.  相似文献   

9.
Increased loading and contingencies often lead to situations where the optimal power flow solution no longer remains within the secure region. In such situations there is a need of determining control actions to be taken quickly, as otherwise the system may become unstable. Hence it is important to quantify the degree of insecurity of the power system both in planning as well as at operational stages. The distance in parameter space between an insecure operating point and the closest point on feasible (secure) hyper-surface has been used as a measure of degree of insecurity. A method based on two-phase optimization neural network has been presented to compute the degree of insecurity and the voltages and angles at all the buses of the system corresponding to the closest secure point. Inclusion of security limits on power system variables assures a solution representing a secure system. When compared with conventional non-linear optimization techniques, the proposed neural network is superior, as it can be easily implemented using digital hardware and is highly suitable for real time implementation in energy management system.The proposed method has been tested on IEEE 30-bus test system and a practical 75-bus Indian system. The results achieved are compared with results from a conventional method. Insecurity arising due to increase in load and contingencies has been considered in this work.  相似文献   

10.
Power system security enhancement is a major concern in the operation of power system. In this paper, the task of security enhancement is formulated as a multi-objective optimization problem with minimization of fuel cost and minimization of FACTS device investment cost as objectives. Generator active power, generator bus voltage magnitude and the reactance of Thyristor Controlled Series Capacitors (TCSC) are taken as the decision variables. The probable locations of TCSC are pre-selected based on the values of Line Overload Sensitivity Index (LOSI) calculated for each branch in the system. Multi-objective genetic algorithm (MOGA) is applied to solve this security optimization problem. In the proposed GA, the decision variables are represented as floating point numbers in the GA population. The MOGA emphasize non-dominated solutions and simultaneously maintains diversity in the non-dominated solutions. A fuzzy set theory-based approach is employed to obtain the best compromise solution over the trade-off curve. The proposed approach has been evaluated on the IEEE 30-bus and IEEE 118-bus test systems. Simulation results show the effectiveness of the proposed approach for solving the multi-objective security enhancement problem.  相似文献   

11.
差分进化算法(DE)已被证明为解决无功优化问题的有效方法.随着越来越多的分布式电源并网,对配电网潮流、电压均有一定改变,同时也影响了DE的鲁棒性和性能.本文在研究DE基础上,针对其收敛过早、局部搜索能力较差的缺陷,分析了量子计算思想和人工蜂群算法的优势,提出改进量子差分进化混合算法(IQDE).通过量子编码思想提高了种群个体的多样性,人工蜂群算法的观察蜂加速进化操作和侦查蜂随机搜索操作分别提高了算法的局部搜索和全局搜索性能.建立以有功网损最小为目标的数学模型,将IQDE算法和DE算法分别用于14节点和30节点标准数据集进行大量仿真实验.实验结果表明,IQDE算法用更少的收敛时间、更小的种群规模便可以获得与DE算法相同甚至更佳的优化效果,并且可以很好的应用于解决难分布式电源的配电网无功优化问题.  相似文献   

12.
This paper presents a novel efficient population-based heuristic approach for optimal location and capacity of distributed generations (DGs) in distribution networks, with the objectives of minimization of fuel cost, power loss reduction, and voltage profile improvement. The approach employs an improved group search optimizer (iGSO) proposed in this paper by incorporating particle swarm optimization (PSO) into group search optimizer (GSO) for optimal setting of DGs. The proposed approach is executed on a networked distribution system—the IEEE 14-bus test system for different objectives. The results are also compared to those that executed by basic GSO algorithm and PSO algorithm on the same test system. The results show the effectiveness and promising applications of the proposed approach in optimal location and capacity of DGs.  相似文献   

13.
This paper presents the use of a new meta-heuristic technique namely gray wolf optimizer (GWO) which is inspired from gray wolves’ leadership and hunting behaviors to solve optimal reactive power dispatch (ORPD) problem. ORPD problem is a well-known nonlinear optimization problem in power system. GWO is utilized to find the best combination of control variables such as generator voltages, tap changing transformers’ ratios as well as the amount of reactive compensation devices so that the loss and voltage deviation minimizations can be achieved. In this paper, two case studies of IEEE 30-bus system and IEEE 118-bus system are used to show the effectiveness of GWO technique compared to other techniques available in literature. The results of this research show that GWO is able to achieve less power loss and voltage deviation than those determined by other techniques.  相似文献   

14.
Differential evolution approach for optimal reactive power dispatch   总被引:2,自引:0,他引:2  
Differential evolution based optimal reactive power dispatch for real power loss minimization in power system is presented in this paper. The proposed methodology determines control variable settings such as generator terminal voltages, tap positions and the number of shunts to be switched, for real power loss minimization in the transmission system. The problem is formulated as a mixed integer nonlinear optimization problem. A generic penalty function method, which does not require any penalty coefficient, is employed for constraint handling. The formulation also checks for the feasibility of the optimal control variable setting from a voltage security point of view by using a voltage collapse proximity indicator. The algorithm is tested on standard IEEE 14, IEEE 30, and IEEE 118-Bus test systems. To show the effectiveness of proposed method the results are compared with Particle Swarm Optimization and a conventional optimization technique – Sequential Quadratic Programming.  相似文献   

15.
In this document, the Firefly Algorithm (FA) and Cuckoo Search (CS) algorithm based on optimal location and the capacity of UPFC to improve the dynamic stability of the power system are proposed. The novelty of the proposed method is exemplified in the improved searching ability, random reduction and reduced complexity. In this regard, the generator fault affects the system dynamic stability constraints such as voltage, power loss, real and reactive power. Here, the FA technique optimizes the maximum power loss line as the suitable location of the UPFC. The affected location parameters and dynamic stability constraints are restored into secure limits using the optimum capacity of the UPFC, which in turn, has been optimized with reduced cost by using the CS algorithm. The attained capacity of the UPFC has been located in the affected location and the power flow of the system analyzed. The proposed method is implemented in the MATLAB/Simulink platform and tested under IEEE 30 and IEEE 14 standard bench mark system. The proposed method performance is evaluated by comparison with those of different techniques such as ABC-GSA, GSA-Bat, Bat-FA and CS algorithms. The comparison results invariably prove the effectiveness of the proposed method and confirm its potential to solve the related problems.  相似文献   

16.
Solution of optimal power flow (OPF) problem aims to optimize a selected objective function such as fuel cost, active power loss, total voltage deviation (TVD) etc. via optimal adjustment of the power system control variables while at the same time satisfying various equality and inequality constraints. In the present work, a particle swarm optimization with an aging leader and challengers (ALC-PSO) is applied for the solution of the OPF problem of power systems. The proposed approach is examined and tested on modified IEEE 30-bus and IEEE 118-bus test power system with different objectives that reflect minimization of fuel cost or active power loss or TVD. The simulation results demonstrate the effectiveness of the proposed approach compared with other evolutionary optimization techniques surfaced in recent state-of-the-art literature. Statistical analysis, presented in this paper, indicates the robustness of the proposed ALC-PSO algorithm.  相似文献   

17.
Optimization of directional over-current relay (DOCR) settings is an important problem in electrical engineering. The optimization model of the problem turns out to be non-linear and highly constrained in which two settings namely time dial setting (TDS) and plug setting (PS) of each relay are considered as decision variables; the sum of the operating times of all the primary relays, which are expected to operate in order to clear the faults of their corresponding zones, is considered as an objective function. In the present study, three models are considered namely IEEE 3-bus model, IEEE 4-bus model and IEEE 6-bus model. To solve the problem, we have applied five newly developed versions of differential evolution (DE) called modified DE versions (MDE1, MDE2, MDE3, MDE4, and MDE5). The results are compared with the classical DE algorithm and with five more algorithms available in the literature; the numerical results show that the modified DE algorithms outperforms or perform at par with the other algorithms.  相似文献   

18.
Reactive Power Dispatch (RPD) plays important role in power system reliability and security. This paper proposes the Optimal Reactive Power Dispatch (ORPD) for real power loss minimization, voltage deviation minimization and voltage stability enhancement using Artificial Bee Colony (ABC) Algorithm. ORPD is a mixed integer nonlinear optimization problem which includes both continuous and discrete control variables. The ABC algorithm is used to find the setting of control variables such as generator voltage magnitude, tap position of tap changing transformer and reactive power output of the compensation devices. The proposed algorithm is tested on IEEE 30 and 57 bus systems, Simulation results show that the proposed approach converges to better solutions and much faster than the earlier reported approaches in the literature. The optimization strategy is general and can be used to solve other power system optimization problems.  相似文献   

19.
Conventionally, optimal reactive power dispatch (ORPD) is described as the minimization of active power transmission losses and/or total voltage deviation by controlling a number of control variables while satisfying certain equality and inequality constraints. This article presents a newly developed meta-heuristic approach, chaotic krill herd algorithm (CKHA), for the solution of the ORPD problem of power system incorporating flexible AC transmission systems (FACTS) devices. The proposed CKHA is implemented and its performance is tested, successfully, on standard IEEE 30-bus test power system. The considered power system models are equipped with two types of FACTS controllers (namely, thyristor controlled series capacitor and thyristor controlled phase shifter). Simulation results indicate that the proposed approach yields superior solution over other popular methods surfaced in the recent state-of-the-art literature including chaos embedded few newly developed optimization techniques. The obtained results indicate the effectiveness for the solution of ORPD problem of power system considering FACTS devices. Finally, simulation is extended to some large-scale power system models like IEEE 57-bus and IEEE 118-bus test power systems for the same objectives to emphasis on the scalability of the proposed CKHA technique. The scalability, the robustness and the superiority of the proposed CKHA are established in this paper.  相似文献   

20.
This study presents a binary particle swarm optimization (BPSO) based methodology for the optimal placement of phasor measurement units (PMUs) when using a mixed measurement set. The optimal PMU placement problem is formulated to minimize the number of PMUs installation subject to full network observability and to maximize the measurement redundancy at the power system buses. In order to ensure full network observability in an electric power network the topology-based algorithm is used and Several factors considered; such as the available data from existing conventional measurements, the number and location of zero injection buses, the number and location of installed PMUs and of course, the system topology. The efficiency of the proposed method is verified by the simulation results of IEEE 14-bus, 30-bus, 57-bus-118 bus systems, respectively. The results show that the whole system can be observable with installing PMUs on less than 25% of system buses. For verification of our proposed method, the results are compared with some newly reported methods which show the method as a novel solution to obtain redundant measurement system with the least number of phasor measurement units.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号