首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Porous mullite ceramics with unidirectionally oriented pores were prepared by an extrusion method to investigate their capillary rise properties. Rayon fibers 16.5 μm in diameter and 800 μm long were used as the pore formers by kneading with alumina powder, kaolin clay, China earthen clay and binder with varying Fe2O3 contents of 0, 5 and 7 mass%. The resulting pastes were extruded into cylindrical tubes (outer diameter (OD) 30–50 mm and inner diameter (ID) 20–30 mm), dried at room temperature and fired at 1500 °C for 4 h. The bulk densities of the resulting porous ceramics ranged from 1.31 to 1.67 g/cm3, with apparent porosities of 43.2–59.3%. The pore size distributions measured by Hg porosimetry showed a sharp peak at 10.0 μm in the sample without Fe2O3 and at 15.6 μm in the samples containing Fe2O3; these pores, which arose from the burnt-out rayon fibers, corresponded to total pore volumes ranging from 0.24 to 0.34 ml/g. SEM showed a microstructure consisting of unidirectionally oriented pores in a porous mullite matrix. Prismatic mullite crystals were well developed on the surfaces of the pore walls owing to the liquid phase formed by the Fe2O3 component added to color the samples. The bending strengths of the tubular samples ranged from 15.6 to 26.3 MPa. The height of capillary rise, measured under controlled relative humidities (RH) of 50, 65 and 85%, was greater in the ceramics containing Fe2O3 than in those without Fe2O3, especially in the thinner samples. The maximum capillary rise reached about 1300 mm, much higher than previously reported. This excellent capillary rise ability is thought to be due to the controlled pore size, pore distribution and pore orientation in these porous mullite ceramics.  相似文献   

2.
The geopolymers were prepared from sodium silicate, metakaolinite, NaOH and H2O at SiO2:Al2O3:Na2O:H2O of 3.66:1:1:x, where x = 8–17, and curing temperatures of 70–110 °C. Since the bending strength of the geopolymers was highest (36 MPa) where H2O/Al2O3 = 9 and the curing temperature = 90 °C, these conditions were adopted. The porous geopolymers were prepared by kneading PLA fibers of 12, 20 and 29 μm diameter into the geopolymer paste, at fiber volumes of 13–28 vol%. The resulting paste was extruded using a domestic extruder, cured at 90 °C for 2 days then dried at the same temperature. The PLA fibers in the composites were removed by alkali treatment and/or heating. The highest capillary rise was achieved in the porous geopolymers containing 28 vol% of 29 μm fibers. The capillary rise of this sample, estimated by the equation of Fries and Dryer1 was 1125 mm.  相似文献   

3.
Porous alumina ceramics with uni-directionally aligned pores were prepared by an extrusion method using 0–40 vol.% poly (vinyl acetate) (PVAC) as the pore former. A paste was prepared by mixing 25 mass% distilled water, 4 mass% methylcellulose, 8 mass% oleic acid and 0.8 mass% ammonium poly (carboxylic acid). This paste was molded into a 10 mm Ø body using a ram-type extruder, dried at room temperature for 24 h, calcined at 600 °C for 1 h and sintered at 1500 °C for 2 h in air. The PVAC added to the paste was homogeneously dispersed and formed particles 0.1–150 μm in size which extended in the extrusion direction and were converted to through-hole pores after sintering. The resulting pore size distribution in the samples was bimodal, centered at about 0.4 μm with a broad peak at about 70 μm dia. The resulting porous alumina ceramics showed high gas permeability because of their uni-directionally oriented through-hole pore structure.  相似文献   

4.
以粒度≤0.063mm的SiC为主要原料,分别加入30%(质量分数)的Al2O3-Y2O3与10%的Al2O3-高岭土复合助烧剂,并外加不同量(分别为12.8%、26.3%、30.0%和36.4%)的造孔剂羧甲基纤维素钠(CMC),制样后首先在空气炉中经过300℃2h或1100℃4h的预烧,然后在真空炉中于1550℃4h真空烧结而制备成SiC多孔陶瓷,并研究了助烧剂种类以及造孔剂CMC外加量对SiC多孔陶瓷显微组织、显气孔率及抗折强度的影响。结果显示:采用Al2O3-Y2O3作为助烧剂的SiC多孔陶瓷比Al2O3-高岭土作助烧剂的具有较高的抗折强度,显气孔率稍有减小;随着羧甲基纤维素钠量的增加,加入两种助烧剂的SiC多孔陶瓷均表现为显气孔率增加,抗折强度降低。  相似文献   

5.
ABSTRACT

To further improve the thermal insulation performance of porous mullite ceramics used in important industrial sectors, a combined foam-gelcasting and pore-former addition approach was investigated in this work, by which hierarchical porous mullite ceramics with excellent properties, in particular, thermal insulation property, were prepared. Both mesopores (2–50?nm) and macropores (117.8–202.7?μm) were formed in porous mullite ceramics resultant from 2?h firing at 1300°C with various amounts of submicron-sized CaCO3 pore former. The former mainly arose from the decomposition of CaCO3, and the latter from the foam-gelcasting process. The porous samples prepared with CaCO3 addition had low linear shrinkage of 2.35–4.83%, high porosity of 72.98–79.07% and high compressive strength of 5.52–14.82?MPa. Most importantly, they also exhibited a very low thermal-conductivity, e.g. 0.114?W?m?1?K?1 at 200°C, which was much lower than in the cases of their counterparts prepared via the conventional foam-gelcasting route.  相似文献   

6.
New gel system for preparing mullite porous ceramics by gel-casting freeze-drying was proposed, using pectin as gel source and alumina and silica as raw materials. Directional channels were formed due to sublimation of water during freeze-drying and decomposition of pectin during high temperature sintering to prepare porous mullite ceramic membranes. Effects of solid content on the properties of mullite ceramics in terms of phase composition, microstructure, apparent porosity, bulk density, pore size distribution, compressive strength, thermal conductivity, pressure drop, and gas permeability were investigated. It was found that prepared porous mullite possessed high apparent porosity (56.04%–75.34%), low bulk density (.77–1.37 g/cm3), uniform pore size distribution, relatively high compressive strength (.61–3.03 MPa), low thermal conductivity (.224–.329 W/(m·K)), high gas permeability coefficient (1.11 × 10−10–4.73 × 10−11 m2), and gas permeance (2.18 × 10−2–9.32 × 10−3 mol⋅m−2⋅s−1⋅Pa−1). These properties make prepared lightweight mullite ceramic membranes promising for application in high temperature flue gas filtration. Proposed gel system is expected to provide a new route to prepare porous ceramics with high porosity and directional channels.  相似文献   

7.
《Ceramics International》2023,49(1):847-854
Mullite fiber-based porous ceramics have been widely used in the field of heat insulation. To further broaden their applications in other fields, such as filtration and sound absorption, mullite whiskers and alumina platelets were introduced as the secondary structural materials in mullite fiber-based porous ceramics by a sol-gel combining heat-treating method, and new fiber-based porous ceramics with a unique multilevel pore structure were developed. By adjusting the molar ratios of aluminium tri-sec-butoxide to aluminium fluoride and calcination temperature, these fiber-based porous ceramics not only presented the characteristics of lightweight (maximum density of 0.38 g/cm3) and good heat insulation (minimum thermal conductivity of 0.11 W/mK) comparable to traditional fiber-based porous ceramics, but also showed a superior specific surface area (up to 11.5 g/m2) and excellent sound absorption performance (average sound absorption coefficient as high as 0.728). Owing to these outstanding characteristics, the corresponding porous ceramics are expected to be promising multifunctional materials in diverse fields, especially thermal insulation and sound absorption.  相似文献   

8.
《应用陶瓷进展》2013,112(4):204-209
Porous mullite ceramics were prepared at 1300–1600°C for 2?h via a foam-gelcasting route using industrial-grade mullite powders as the main raw material, Isobam 104 as the dispersing and gelling agent, triethanolamine lauryl sulphate as the foaming agent and sodium carboxymethyl cellulose as the foam stabilising agent. The effects of firing temperature on the sintering behaviour of green samples as well as microstructures and properties of final porous mullite products were investigated. With increasing the temperature from 1300 to 1600°C, linear shrinkage and bulk density values of fired samples increased, whereas their porosity decreased. Mechanical strength and thermal conductivity values of fired samples decreased with increasing their porosities. Even at a porosity level as high as 79.4%, compressive and flexural strengths of fired samples (with average pore size of 314?μm) remained as high as 9.0 and 3.7?MPa, respectively, and their thermal conductivity (at 200°C) remained as low as 0.21?W?(m?1?K?1).  相似文献   

9.
《Ceramics International》2016,42(13):14843-14848
A novel fibrous porous mullite network with a quasi-layered microstructure was produced by a simple vacuum squeeze moulding technique. The effects of organic binder content, inorganic binder and adsorbent on the microstructure and the room-temperature thermal and mechanical properties of fibrous porous mullite ceramics were systematically investigated. An anisotropy microstructure without agglomeration and layering was achieved. The fibrous porous mullite ceramics reported in this study exhibited low density (0.40 g/cm3), low thermal conductivity (~0.095 W/(m K)), and high compressive strength (~2.1 MPa in the x/y direction). This study reports an optimal processing method for the production of fibrous porous ceramics, which have the potential for use as high-temperature thermal insulation material.  相似文献   

10.
Porous mullite ceramics with an open/closed pore structure were prepared by protein foaming method combined with fly ash hollow spheres. Both the open porosity and total porosity of samples were enhanced by increasing the hollow sphere content. Mullite whiskers with a diameter of 0.2–4 μm were grown in-situ in the porous mullite ceramics with an AlF3 catalyst, conforming to a vapor-solid growth mechanism. The pore structure of the porous mullite ceramics was significantly affected by the mullite whiskers which increased the open porosity and total porosity. Moreover, the median pore size was reduced from 65.05 μm to 36.92 μm after the introduction of mullite whiskers. The flexural strength and the thermal conductivity of the samples decreased with increasing total porosity. The porosity dependence of the thermal conductivity was well described by the universal model, providing a reference for the prediction of thermal conductivity of porous ceramics with open/closed pores.  相似文献   

11.
Porous alumina ceramics with unidirectionally-oriented pores were prepared by extrusion. Carbon fibers of 14 μm diameter and 600 μm length to be used as the pore-forming agent were kneaded with alumina, binder and dispersing agent. The resulting paste was extruded, dried at 110 °C, degreased at 1000 °C and fired at 1600 °C for 2 h. SEM showed a microstructure of dispersed highly oriented pores in a dense alumina matrix. The pore area in the cross section was 25.3% with about 1700 pores/mm2. The pore size distribution of the fired body measured by Hg porosimetry showed a sharp peak corresponding to the diameter of the burnt-out carbon fibers. The resulting porous alumina ceramics with 38% total porosity showed a fracture strength of 171 MPa and a Young's modulus of 132 GPa. This strength is significantly higher than the reported value for other porous alumina ceramics even though the present pore size is much larger.  相似文献   

12.
The elastic properties, in particular the tensile modulus (Young's modulus) and Poisson ratio, of porous alumina, zirconia, and alumina–zirconia composite ceramics are studied using the resonance frequency method and the results compared with theoretical predictions. Starch is used as a pore-forming agent, so that the resulting microstructure is essentially of the matrix-inclusion type (with large bulk pores, connected by small throats when a percolation threshold is exceeded). It is found that for this type of microstructure the porosity dependence of the Young's modulus is significantly below the upper Hashin–Shtrikman bound and the power-law prediction; it corresponds well, however, to a recently proposed exponential relation and to an empirical volume-weighted average of the upper and lower Hashin–Shtrikman bounds. Results for all three types of ceramics indicate that – in the porosity range considered, i.e. up to approximately 50% – the Poisson ratio depends only slightly on porosity.  相似文献   

13.
The thermal conductivity of porous alumina ceramics prepared using different types of starch (potato, wheat, corn, and rice starch) as pore-forming agents is investigated from room temperature up to 500 °C. The temperature dependence measured for alumina ceramics of different porosity (in the range 6–47%) is fitted with second-order polynomials and 1/T-type relations, and compared to available literature data for dense alumina. It is found that the porosity dependence of the relative thermal conductivity kr = k/k0 is well described by a modified exponential relation of the form kr = exp(?1.5?/(1 ? ?)), where ? is the porosity. This finding is in agreement with other literature data and seems to indicate a common feature of all porous materials with microstructures resulting from fugitive pore-forming agents.  相似文献   

14.
Highly porous silica ceramics with unidirectional pores were prepared using the freeze casting method. By adjusting the solid content and freezing temperature, the porosity of the ceramics was tailored in the range of 78.20%-84.59% and pore size in the range of 8.4-71.4 μm, respectively. Sound absorption properties of porous silica ceramics was studied and the effect of structural factors was systematically investigated. The results showed that higher porosity and smaller pores of the porous ceramics favored the sound absorption in the entire sound wave frequency. By backing the sample with small pore size porous ceramics, the sound absorption property was enhanced, particularly in the low and medium frequency range, thus the sound absorption peak shifted towards lower frequency. The presence of air gap in the back would also favor sound absorption in low and medium frequency range. The as-fabricated porous silica ceramics owed excellent sound absorption properties due to their unidirectional pores and low flow resistances.  相似文献   

15.
《Ceramics International》2017,43(7):5478-5483
Porous fibrous mullite ceramics with a narrow range of pore size distribution have been successfully prepared utilizing a near net-shape epoxy resin gel-casting process by using mullite fibers, Al2O3 and SiC as raw materials. The effects of sintering temperatures, different amounts of fibers and Y2O3 additive on the phase compositions, linear shrinkage, apparent porosity, bulk density, microstructure, compressive strength and thermal conductivity were investigated. The results indicated that mullite-bonded among fibers were formed in the porous fibrous mullite ceramics with a bird nest pore structure. After determining the sintering temperatures and the amount of fibers, the tailored porous fibrous mullite ceramics had a low linear shrinkage (1.36–3.08%), a high apparent porosity (61.1–71.7%), a relatively high compressive strength (4.4–7.6 MPa), a low thermal conductivity (0.378–0.467 W/m K) and a narrow range of pore size distribution (around 5 µm). The excellent properties will enable the porous ceramics as a promising candidate for the applications of hot gas filters, thermal insulation materials at high temperatures.  相似文献   

16.
《Ceramics International》2019,45(11):13964-13970
A facile strategy for the fabrication of elongated mullite reinforced porous alumina ceramics (PACs) using carbonized rice husk (CRH) as pore-forming agent and silica source is reported for the first time. A large amount of elongated mullite is synthesized in pores due to the reaction of amorphous silica in CRH skeleton and alumina ceramic powder. Elongated mullite acts as the bridges between pore walls, enhancing the compressive strength of PACs. Furthermore, secondary pores from the intersection of elongated mullite is favor of decreasing of the thermal conductivity. High performance PAC with porosity of 74.3% has been fabricated by employing 25 wt% CRH, which possesses relatively low thermal conductivity of 0.189 W/(m•K) and ultra-high compressive strength of 45 MPa. Its comprehensive performance is much better than that of existing ceramic materials. Our findings present a facile, eco-friendly and effective approach to fabricate high performance PACs as the high-temperature thermal insulation materials.  相似文献   

17.
Multiple oxide-bonded porous SiC ceramics were fabricated by infiltrating a porous powder compact of SiC and alumina with cordierite sol followed by sintering at 1300-1400°C in air for 3 hours. The microstructures, phase components, mechanical properties, and air permeation behavior of the developed porous ceramics were examined and compared with materials obtained by the traditional powder processing route. The porosity, average pore diameter, and flexural strength of the ceramics varied from 33 to 37 vol%, ~12-14 μm and ~23-39.6 MPa, respectively, with variation in sintering temperature. The X-ray diffraction results reveal that both the amount of cordierite and mullite as the binder increased with increase in sintering temperature. In addition, it was found that the addition of alumina in powder form effectively enhanced the strength due to formation of mullite in the bond phase in contrast to the samples prepared without alumina additive. To determine the suitability of the material in particulate filtration application, particle collection efficiency of the filter material was evaluated theoretically using single collector efficiency model.  相似文献   

18.
Pore-created silicon carbide (SiC) ceramics were liquid phase sintered (LPS) by using Al2O3–Y2O3 as sintering additive and calcium chloride (CaCl2) as pore former. The CaCl2 did not react with other compositions, and accumulatively formed CaCl2 crystals on the grain boundary of SiC ceramics. The addition of CaCl2 decreased the sintering and mechanical properties of SiC ceramics, but obviously reduced the dry friction coefficient. The pores on the surface and inside of SiC ceramics could be continuously created by the solubility and non-volatility of calcium chloride.  相似文献   

19.
Porous alumina ceramics with unidirectionally oriented pores were prepared using an extrusion method. The paste for extrusion was prepared by mixing alumina and nylon 66 fibers with binder and dispersant. The resulting paste was extruded, dried at room temperature, and after removal of the binder at 600 °C, fired at 1500 °C for 2 h. The pore size in the sintered body, determined from SEM micrographs, was 16 μm, corresponding to the size of the burnt-out nylon 66 fibers. The degree of orientation of the cylindrical pores was evaluated from SEM micrographs to be highly aligned to the extrusion direction. The orientation of the pores decreased with increasing fiber loading because of strong interaction between the fibers. The pore size distribution of the extruded samples showed a peak at 16 μm corresponding to the cylindrical pore diameter and also at 4 and 6 μm corresponding to the pores formed by connection of the fibers.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号