首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
通过电子鼻系统获取的数据具有维数高、非线性变化等特点,不利于后续算法的识别或分类。因此,提出了基于核主元分析(KPCA)与在线支持向量机(Online-SVM)的电子鼻系统识别新算法。首先采用KPCA算法对采集到的原始数据进行特征提取,达到降维与去噪的目的,然后使用在线支持向量机对数据进行预测,最后与基于径向基函数的神经网络算法(RBF)预测结果进行对比分析。实验结果表明,新算法在电子鼻信号处理领域相对较优,具有较好的价值。  相似文献   

2.
为解决在人脸识别过程中算法模型的计算效率受样本特征维数影响的问题,通过主成分分析(PCA)对图像进行特征选择,但传统PCA特征计算的效率取决于维数的大小,为加快计算速度给出一种快速的PCA算法(FastPCA),可以有效降低特征提取的时间.为了避免过拟合问题并提高识别准确率,提出一种基于AdaBoost的孪生支持向量机...  相似文献   

3.
基于尺度核函数的最小二乘支持向量机   总被引:1,自引:0,他引:1  
支持向量机的核函数一直是影响其学习效果的重要因素.本文基于小波分解理论和支持向量机核函数的条件,提出一种多维允许支持向量尺度核函数.该核函数不仅具有平移正交性,且可以以其正交性逼近二次可积空间上的任意曲线,从而提升支持向量机的泛化性能.在尺度函数作为支持向量核函数的基础之上,提出基于尺度核函数的最小二乘支持向量机(LS-SSVM).实验结果表明,LS-SSVM在同等条件下比传统支持向量机的学习精度更高,因而更适用于复杂函数的学习问题.  相似文献   

4.
支持向量机中的核参数选择问题   总被引:18,自引:3,他引:18  
核函数中的参数选择是支持向量机中的一个很重要的问题,它直接影响模型的推广能力。通过最速下降法求LOO上界的极小点来确定核参数是一种新的核参数选择方法。由于该方法易陷入局部最优解,提出了一种基于混合遗传算法求解LOO上界极小点的核参数选择方法。实验证明,通过该方法选择出来的核参数能够提高分类精度,具有实用性。  相似文献   

5.
基于支持向量机核函数的条件,将Sobolev Hilbert空间的再生核函数和多项式核函数进行有效的线性组合,给出一种新的支持向量机的组合核函数,提出一种基于再生核的组合核函数支持向量机的模式分析方法,该方法兼具了全局核函数与局部核函数的优点,且算法的复杂度被降低。仿真实验结果表明:支持向量机的核函数采用基于再生核的组合核函数是可行的,且此核函数不仅具有核函数的非线性映射特征,而且也继承了核函数对非线性逐级精细逼近的特征,模式分析的效果比单核函数可以更加细腻。  相似文献   

6.
小波支持向量机   总被引:3,自引:0,他引:3  
在研究支持向量机(SVM)核方法和小波框架理论的基础上,提出了一种称为小波支持向量机(WaveletSupport Vector Machines,WSVM)的新的机器学习构造方法.该方法引入小波基函数构造SVM的核函数,得到了一种新的SVM模型,然后提出了此模型的结构设计和实现算法,最后给出了几种常用的小波核函数,并给出了理论证明.通过仿真实验,把该方法与小波神经网络、高斯核SVM相比较,得到了较好的实验结果,从而验证了该方法的正确性和有效性.  相似文献   

7.
核函数支持向量机   总被引:3,自引:0,他引:3  
概述了基于核函数方法的支持向量机。首先简要叙述支持向量机的基本思想和核特征空间,然后重点介绍核函数支持向量机的前沿理论与领先技术,同时描述了核函数支持向量机在关键领域的应用。  相似文献   

8.
基于核主元分析的支持向量机识别方法研究   总被引:2,自引:0,他引:2  
主元分析、核主元分析、支持向量机等方法在分类与识别中应用时都各有自己的优点,本文提出一种基于核主元分析的支持向量机识别方法,用该方法分别对ORL人脸库和iris数据集中的数据进行分类与识别,结果表明:如果调整好了核函数的参数,可以得到极高的识别率。  相似文献   

9.
基于统计学习理论的支持向量机算法以其优秀的学习性能已广泛用于解决分类与回归问题。分类算法通过求两类样本之间的最大间隔来获得最优分离超平面,其几何意义相当直观,而回归算法的几何意义就不那么直观了。另外,有些适用于分类问题的快速优化算法岁不能用于回归算法中。研究了分类与回归算法之间的关系,为快速分类算法应用于回归模型提供了一定的理论依据。  相似文献   

10.
基于支持向量机的人脸识别   总被引:4,自引:0,他引:4  
由于支持向量机(SVM)有着适合处理小样本问题、高维数及泛化性能强等多方面的优势,并且基于核函数主元分析的方法对于非线性问题的特征提取来说较为合理,因此提出了一种基于核函数主元分析(KPCA)与支持向量机(SVM)的人脸识别方法。在使用KPCA方法对人脸图像进行特征提取后,用SVM对特征向量进行分类识别。利用剑桥ORL的人脸数据库进行的实验结果验证了本算法的有效性。  相似文献   

11.
基于核函数的支持向量机分类方法   总被引:2,自引:0,他引:2  
支持向量机是目前正在兴起的一种新的数据挖掘分类方法,阐述了支持向量机的理论基础及核函数,阐明了支持向量机分类的基本思想,分析了支持向量机的优缺点,对支持向量机在海量数据分类中的应用前景进行了展望。  相似文献   

12.
高斯核支持向量机分类和模型参数选择研究   总被引:20,自引:4,他引:20  
支持向量机(SupportVectorMachine,SVM)是近几年发展起来的机器学习新方法,以高斯核为核函数的支持向量机在实际应用中表现出良好的学习性能,被广泛应用于模式分类中。论文研究了高斯核支持向量机分类在IRIS分类问题上的应用,并结合结构风险最小化原则分析了误差惩罚参数C和高斯核宽度σ对SVM性能的影响,最后通过数值实验进一步分析了这种影响。  相似文献   

13.
由于支持向量机对样本中的噪声及孤立点非常敏感,因而在解决非线性、高维数、不确定问题时,使用模糊支持向量机比使用支持向量机的效果要好。在模糊支持向量机中,模糊隶属度函数的建立是关键也是难点。一般,模糊隶属度是在原始空间中根据样本点的相互距离及到类中心的距离创建的。考虑样本间的密切度,在特征空间中利用混合核函数建立一种新的模糊隶属度。通过试验比较多项式核函数、高斯径向基核函数与混合核函数,可看出新方法表现出了它的优越性。  相似文献   

14.
传统转导支持向量机有效地利用了未标记样本,具有较高的分类准确率,但是计算复杂度较高。针对该不足,论文提出了一种基于核聚类的启发式转导支持向量机学习算法。首先将未标记样本利用核聚类算法进行划分,然后对划分后的每一簇样本标记为同一类别,最后根据传统的转导支持向量机算法进行新样本集合上的分类学习。所提方法通过对核聚类后同一簇未标记样本赋予同样的类别,极大地降低了传统转导支持向量机算法的计算复杂度。在MNIST手写阿拉伯数字识别数据集上的实验表明,所提算法较好地保持了传统转导支持向量机分类精度高的优势。  相似文献   

15.
提出一种基于二维主分量(2DPCA)分析和支持向量机的层叠人脸检测算法,用于复杂背景灰度图像的人脸检测。算法首先采用2DPCA分析方法滤去大量非人脸窗口,之后用支持向量机对通过的窗口进行检测。由于在通过2DPCA分析方法的子空间内训练SVM,降低了分类器的训练难度。并且和传统的PCA方法相比,2DPCA直接采用二维图像矩阵表示人脸,进行特征提取,提高了计算效率。实验对比数据表明该算法大大提高了检测速度,降低了虚警率。  相似文献   

16.
为了解决最小二乘支持向量机模型稀疏性不足的问题,提出了一种约简核矩阵的LS-SVM稀疏化方法.按照空间两点的欧式距离寻找核矩阵中相近的行(列),并通过特定的规则进行合并,以减小核矩阵的规模,进而求得稀疏LS-SVM模型.以高斯径向基核函数为例,详细阐述了改进方法的实现步骤,并通过仿真表明了采用该方法求得的稀疏LS-SVM模型泛化能力良好.  相似文献   

17.
提出了一种基于局部多核支持向量机的视频镜头边界检测方法.利用视频图像相邻帧的时空信息构建视频中间特征,在此基础上利用局部多核支持向量机将视频帧划分为边界帧和非边界帧.为了提高基于全局优化的多核支持向量机的检测精度,利用局部敏感哈希算法将视频帧投影全哈希子空间,结合多核学习方法为各个哈希子空间构建局部多核支持向量机,利用SMOTE上采样技术解决了视频图像边界帧和普通帧的不平衡问题.试验结果表明,本文提出的镜头边界检测方法的金全率和查准率得到了提高.  相似文献   

18.
陈俏  曹根牛  陈柳 《微机发展》2010,(1):250-252,F0003
支持向量机是基于统计学习理论的新一代机器学习技术,其非线性回归预测性能优越于传统统计方法。提出了一种大气污染物浓度预测模型,该方法将支持向量机应用于大气污染物浓度预测,首先对各类影响因子进行分析并进行建模预测;而后利用主成分分析的方法对输入因子降维,从而形成支持向量机的训练样本集;在此基础上建立了基于RBF核函数支持向量回归法的大气污染预模型。大气污染预测实例表明,该方法具有泛化能力强、预测精度高、训练速度快、稳定性好、便于建模等优点,有良好的应用前景。  相似文献   

19.
基于PSO算法的支持向量机核参数选择问题研究   总被引:2,自引:0,他引:2  
核函数中的参数选择是支持向量机中的一个非常重要的问题,它直接影响到模型的推广能力.本文提出了采用粒子群算法搜索支持向量机最优核参数的方法,并在Checker数据集上进行了实验,实验结果表明,通过这种方法选择出来的核参数能够提高分类正确率以及预测正确率,具有一定的实用性.  相似文献   

20.
层次聚类LSSVM在模拟电路故障诊断中的应用   总被引:2,自引:0,他引:2  
文中借鉴层次聚类的思想,采用正向训练、反向测试的方法构造了层次聚类最小二乘支持向量机,并针对容差模拟电路的故障诊断问题,在利用核主元分析法提取其故障特征的基础上,采用所构造的层次聚类最小二乘支持向量机对模拟电路的软故障进行了诊断,并与常用的1对1、1对多算法进行比较,结果表明该方法简化了分类器的结构,缩短了训练测试时间,提高了故障识别率。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号