首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An efficient and accurate implementation of the meshless radial basis integral equation method (RBIEM) is proposed. The proposed implementation does not involve discretization of the subdomains’ boundaries. By avoiding the boundary discretization, it was hypothesised that a significant source of error in the numerical scheme is avoided. The proposed numerical scheme was tested on two problems governed by the Poisson and Helmholtz equations. The test problems were selected such that the spatial gradients of the solutions were high to examine the robustness of the numerical scheme. The dual reciprocity method (DRM) and the cell integration technique were used to treat the domain integrals arising from the source terms in the partial differential equations. The results showed that the proposed implementation is more accurate and more robust than the previously suggested implementation of the RBIEM. Though the CPU time usage of the proposed scheme is lower, the difference to the previously proposed scheme is not significant. The proposed scheme is easier to implement, since the task of keeping track of boundary elements and boundary nodes is not needed. The proposed implementation of the RBIEM is promising and opens up possibilities for efficient implementation in three-dimensional problems. This is currently under investigation.  相似文献   

2.
In this paper, an efficient Kansa-type method of fundamental solutions (MFS-K) is extended to the solution of two-dimensional time fractional sub-diffusion equations. To solve initial boundary value problems for these equations, the time dependence is removed by time differencing, which converts the original problems into a sequence of boundary value problems for inhomogeneous Helmholtz-type equations. The solution of this type of elliptic boundary value problems can be approximated by fundamental solutions of the Helmholtz operator with different test frequencies. Numerical results are presented for several examples with regular and irregular geometries. The numerical verification shows that the proposed numerical scheme is accurate and computationally efficient for solving two-dimensional fractional sub-diffusion equations.  相似文献   

3.
In this paper we present a mesh-free approach to numerically solving a class of second order time dependent partial differential equations which include equations of parabolic, hyperbolic and parabolic-hyperbolic types. For numerical purposes, a variety of transformations is used to convert these equations to standard reaction-diffusion and wave equation forms. To solve initial boundary value problems for these equations, the time dependence is removed by either the Laplace or the Laguerre transform or time differencing, which converts the problem into one of solving a sequence of boundary value problems for inhomogeneous modified Helmholtz equations. These boundary value problems are then solved by a combination of the method of particular solutions and Trefftz methods. To do this, a variety of techniques is proposed for numerically computing a particular solution for the inhomogeneous modified Helmholtz equation. Here, we focus on the Dual Reciprocity Method where the source term is approximated by radial basis functions, polynomial or trigonometric functions. Analytic particular solutions are presented for each of these approximations. The Trefftz method is then used to solve the resulting homogenous equation obtained after the approximate particular solution is subtracted off. Two types of Trefftz bases are considered, F-Trefftz bases based on the fundamental solution of the modified Helmholtz equation, and T-Trefftz bases based on separation of variables solutions. Various techniques for satisfying the boundary conditions are considered, and a discussion is given of techniques for mitigating the ill-conditioning of the resulting linear systems. Finally, some numerical results are presented illustrating the accuracy and efficacy of this methodology.  相似文献   

4.
In this paper, a contour integral method (especially the block Sakurai–Sugiura method) is used to solve the eigenvalue problems governed by the Helmholtz equation, and formulated through two meshless methods. Singular value decomposition is employed to filter out the irrelevant eigenvalues. The accuracy and the ease of use of the proposed approach is illustrated with some numerical examples, and the choice of the contour integral method parameters is discussed. In particular, an application of the method on a sphere with realistic impedance boundary condition is performed and validated by comparison with results issued from a finite element method software.  相似文献   

5.
In the present paper, by use of the boundary integral equation method and the techniques of Green fundamental solution and singularity analysis, the dynamic infinite plane crack problem is investigated. For the first time, the problem is reduced to solving a system of mixed-typed integral equations in Laplace transform domain. The equations consist of ordinary boundary integral equations along the outer boundary and Cauchy singular integral equations along the crack line. The equations obtained are strictly proved to be equivalent with the dual integral equations obtained by Sih in the special case of dynamic Griffith crack problem. The mixed-type integral equations can be solved by combining the numerical method of singular integral equation with the ordinary boundary element method. Further use the numerical method for Laplace transform, several typical examples are calculated and their dynamic stress intensity factors are obtained. The results show that the method proposed is successful and can be used to solve more complicated problems.  相似文献   

6.
The inverse boundary optimization problem, governed by the Helmholtz equation, is analyzed by the Trefftz method (TM) and the exponentially convergent scalar homotopy algorithm (ECSHA). In the inverse boundary optimization problem, the position for part of boundary with given boundary condition is unknown, and the position for the rest of boundary with additionally specified boundary conditions is given. Therefore, it is very difficult to handle the boundary optimization problem by any numerical scheme. In order to stably solve the boundary optimization problem, the TM, one kind of boundary-type meshless methods, is adopted in this study, since it can avoid the generation of mesh grid and numerical integration. In the boundary optimization problem governed by the Helmholtz equation, the numerical solution of TM is expressed as linear combination of the T-complete functions. When this problem is considered by TM, a system of nonlinear algebraic equations will be formed and solved by ECSHA which will converge exponentially. The evolutionary process of ECSHA can acquire the unknown coefficients in TM and the spatial position of the unknown boundary simultaneously. Some numerical examples will be provided to demonstrate the ability and accuracy of the proposed scheme. Besides, the stability of the proposed meshless method will be validated by adding some noise into the boundary conditions.  相似文献   

7.
采用有限元/快速多极边界元法进行水下弹性结构的辐射和散射声场分析。Burton-Miller法用于解决传统单Helmholtz边界积分方程在求解外边界值问题时出现的非唯一解的问题。该文采用GMRES和快速多极算法加速求解系统方程。针对传统快速算法在高频处效率低和对角式快速算法在低频处不稳定这一问题,该文通过结合这两种快速算法形成宽频快速算法来克服。同时该文通过观察不同参数条件设置下,宽频快速多极法得到的数值结果在计算精度和计算时间上的变化,得到最优的参数组合值。最后通过数值算例验证该文算法的正确性和有效性。  相似文献   

8.
In this paper, the boundary knot method is extended to the solution of inhomogeneous equations, and it is applied to the Cauchy problem associated with the inhomogeneous Helmholtz equation. Here, we assume that the boundary condition is specified only on a part of the boundary, and the boundary conditions on the remaining part of the boundary are to be determined with the assistance of additional data. Since the resulting matrix equation is highly ill-conditioned, a regularized solution is obtained by employing the truncated singular value decomposition to solve the matrix equation arising from the boundary knot method, with the regularization parameter determined by the L-curve method. Numerical results are presented for several examples with smooth and piecewise smooth boundaries. The numerical verification shows that the proposed numerical scheme is accurate, stable with respect to data noise, and convergent with respect to decreasing the amount of noise in the data.  相似文献   

9.
 In this article, a coupled finite element and boundary element approach for the acoustic radiation and scattering from submerged elastic bodies of arbitrary shape is presented. An alternative to the direct boundary element method for acoustics is proposed. By taking an auxiliary source surface inside the radiating boundary and following the usual discretization and integration procedures employed in the boundary element method, both the singularities of the integrands and the nonuniqueness problems do not arise. In addition, the difficulty of slope discontinuity also can be overcome. This procedure is formulated in a similar fashion of wave superposition method, except that the direct boundary integral equations are adopted. The proposed formulation employ the surface Helmholtz integral equation and its normal gradient like that adopted in the Burton–Miller approach, but do not employ any coupling constant. Typical examples are presented that demonstrate the efficiency of the proposed technique. Received 9 April 2000  相似文献   

10.
论Helmholtz方程的一类边界积分方程的合理性   总被引:5,自引:0,他引:5  
本文导出了Helmholtz 方程超定边值问题有解的一个充要条件,和用非解析开拓法证明了文[1]中的Helmholtz 方程在外域中的解的边界积分表示式的合理性,并将此类边界积分表示式推广用于带空洞的有限域。这样就比较严密而又浅近地证明了基于该表示式建立起来的间接变量和直接变量边界积分方程的合理性。  相似文献   

11.
In this paper, the inverse Cauchy problems for elliptic equations, including the Laplace equation, the Poisson equation, and the Helmholtz equation, defined in annular domains are investigated. When the outer boundary of an annulus is imposed by overspecified boundary data, we seek unknown data in the inner boundary through a combination of the spring-damping regularization method (SDRM) and the mixed group-preserving scheme (MGPS). Several numerical examples are examined to show that the MGPS plus the SDRM can overcome the ill-posed behavior of this highly ill-conditioned inverse Cauchy problem. The presently proposed novel algorithm has good efficiency and stability against the disturbance from large random noise even up to 50%, and the computational cost of MGPS is very time saving.  相似文献   

12.
A general method has been proposed for constructing integral representations of general solutions and boundary integral equations of multidimensional boundary value problems of mathematical physics for regions with cuts. It involves the use of the theory of generalized functions, and in particular of the surface delta function. At first, the boundary value problems of Dirichlet and Neumann were studied for n-dimensional Poisson and Helmholtz equations in a space with cuts along piecewise-smooth surfaces. After that the method is extended to the case of a system of differential equations. In this way the basic spatial and plane problems of elasticity theory were considered for an anisotropic infinite body with cracks under static and dynamic loading. The corresponding axisymmetric problems were also studied.Translated from Fiziko-Khimicheskaya Mekhanika Materialov, Vol. 26, No. 6, pp. 61–71, November–December, 1990.  相似文献   

13.
This paper reports on some problems that can arise with the use of regularized derivative boundary integral equations. It concentrates on developing a formulation for the simple Laplace equation using a cubic Hermite interpolation and shows how certain combinations of derivative and conventional boundary integral equations can result in a solution scheme severely lacking in stability. With some simple two- and three-dimensional geometries, the derivative equations on their own do not provide enough information to solve a Dirichlet problem. Even combinations of the conventional and derivative equations fail for some simple geometries. We conclude that the only consistently successful combination is that of the conventional equation with the tangential derivative equation, which showed cubic convergence of results with mesh refinement. Numerical results are presented for this scheme in both two and three dimensions.  相似文献   

14.
Abstract

In this paper, the boundary integral equation (BIE) method is employed to investigate the radiation and scattering of time‐harmonic elastic waves by obstacles of arbitrary shape embedded in an infinite medium. Based on the vector BIE, entirely free of Cauchy principal value integrals, an efficient numerical scheme using quadratic isoparametric boundary elements is proposed. Furthermore, the difficulty of non‐uniquess of a solution inherent with BIE formulations for exterior elastodynamic problems is studied numerically and analytically. The counterparts of the combined Helmholtz integral formulation method for elastodynamics together with the least‐square or Lagrange‐multiplier technique are derived and applied to overcome this difficulty successfully. In addition, the elastic‐wave fields radiated or scattered by either a spherical cavity or a rigid sphere in an infinite medium are calculated and the results are compared with the analytical solutions to demonstrate the accuracy and versatility of the proposed numerical scheme.  相似文献   

15.
In many boundary value problems involving triple integral equations or triple series relations, it is required to solve a single singular integral equation with constant but unknown limits of integration. In this paper we present a variational method to determine approximately the bounded unknown function, if it exists, together with the unknown limits of integration for a type of such singular integral equations. The method is used to recover the exact solution of an integral equation and is applied to a contact problem in the theory of elasticity which is intractable otherwise.  相似文献   

16.
A numerical method for the Dirichlet initial boundary value problem for the heat equation in the exterior and unbounded region of a smooth closed simply connected 3-dimensional domain is proposed and investigated. This method is based on a combination of a Laguerre transformation with respect to the time variable and an integral equation approach in the spatial variables. Using the Laguerre transformation in time reduces the parabolic problem to a sequence of stationary elliptic problems which are solved by a boundary layer approach giving a sequence of boundary integral equations of the first kind to solve. Under the assumption that the boundary surface of the solution domain has a one-to-one mapping onto the unit sphere, these integral equations are transformed and rewritten over this sphere. The numerical discretisation and solution are obtained by a discrete projection method involving spherical harmonic functions. Numerical results are included.  相似文献   

17.
该文将时域精细积分边界元方法与界面追踪法相结合,给出平面单相凝固热传导问题的一个有效数值分析方法。首先,利用稳态热传导问题的基本解和径向积分法给出瞬态传热问题的边界积分方程,并采用精细积分方法求解离散的微分方程组,获得相变界面的热流密度。然后应用相变界面上的能量守恒方程,采用界面追踪法来预测相变边界的移动位置,从而给出相关问题数值模拟的结果。最后,为验证该文方法的有效性,给出两个数值算例并与解析解进行了对比。结果表明,该文方法具有较高的求解精度,是求解相变热传导问题的一种有效数值方法。  相似文献   

18.
In this paper an integral equation formulation is proposed for the analysis of orthotropic potential problems. The two primary integral equations of the method are derived from the original governing differential equation firstly by rewriting it in a slightly different form and then applying the direct boundary element method formulation. The solution procedure is based on the use of the fundamental solutions for the isotropic potential case and special attention is given to the differentiation of a singular integral which yields an additional term as well as to the evaluation of the resulting Cauchy principal value integral. A simple discretization for the boundary and its interior domain is adopted in order to express the primary integral equations of the method in matrix form. Three examples are presented, the results of which illustrate the satisfactory accuracy of the method. The main feature of the proposed formulation is its generality, which makes possible its direct extension to solve such as heat conduction or subsurface flow in anisotropic media and, foremost, to orthotropic and anisotropic elasticity or elastoplasticity.  相似文献   

19.
Water flow in unsaturated soils that is induced by infiltration and root-water uptake processes is governed by Richard's equation. To study the governing equation more conveniently, it is transformed into a modified Helmholtz equation using the Kirchhoff transformation with dimensionless variables. In this study, we employ a dual reciprocity boundary element method (DRBEM) and the predictor–corrector method to numerically solve problems governed by the equation. The proposed method is tested on problems involving infiltration from periodic channels with root water uptake.  相似文献   

20.
Abstract

This expository paper is concerned with the direct integral formulations for boundary value problems of the Helmholtz equation. We discuss unique solvability for the corresponding boundary integral equations and its relations to the interior eigenvalue problems of the Laplacian. Based on the integral representations, we study the asymptotic behaviors of the solutions to the boundary value problems when the wave number tends to zero. We arrive at the asymptotic expansions for the solutions, and show that in all the cases, the leading terms in the expansions are always the corresponding potentials for the Laplacian. Our integral equation procedures developed here are general enough and can be adapted for treating similar low frequency scattering problems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号