首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, we present a machine learning approach to measure the visual quality of JPEG-coded images. The features for predicting the perceived image quality are extracted by considering key human visual sensitivity (HVS) factors such as edge amplitude, edge length, background activity and background luminance. Image quality assessment involves estimating the functional relationship between HVS features and subjective test scores. The quality of the compressed images are obtained without referring to their original images (‘No Reference’ metric). Here, the problem of quality estimation is transformed to a classification problem and solved using extreme learning machine (ELM) algorithm. In ELM, the input weights and the bias values are randomly chosen and the output weights are analytically calculated. The generalization performance of the ELM algorithm for classification problems with imbalance in the number of samples per quality class depends critically on the input weights and the bias values. Hence, we propose two schemes, namely the k-fold selection scheme (KS-ELM) and the real-coded genetic algorithm (RCGA-ELM) to select the input weights and the bias values such that the generalization performance of the classifier is a maximum. Results indicate that the proposed schemes significantly improve the performance of ELM classifier under imbalance condition for image quality assessment. The experimental results prove that the estimated visual quality of the proposed RCGA-ELM emulates the mean opinion score very well. The experimental results are compared with the existing JPEG no-reference image quality metric and full-reference structural similarity image quality metric.  相似文献   

2.
This paper presents a performance enhancement scheme for the recently developed extreme learning machine (ELM) for classifying power system disturbances using particle swarm optimization (PSO). Learning time is an important factor while designing any computational intelligent algorithms for classifications. ELM is a single hidden layer neural network with good generalization capabilities and extremely fast learning capacity. In ELM, the input weights are chosen randomly and the output weights are calculated analytically. However, ELM may need higher number of hidden neurons due to the random determination of the input weights and hidden biases. One of the advantages of ELM over other methods is that the parameter that the user must properly adjust is the number of hidden nodes only. But the optimal selection of its parameter can improve its performance. In this paper, a hybrid optimization mechanism is proposed which combines the discrete-valued PSO with the continuous-valued PSO to optimize the input feature subset selection and the number of hidden nodes to enhance the performance of ELM. The experimental results showed the proposed algorithm is faster and more accurate in discriminating power system disturbances.  相似文献   

3.
As a novel learning algorithm for single-hidden-layer feedforward neural networks, extreme learning machines (ELMs) have been a promising tool for regression and classification applications. However, it is not trivial for ELMs to find the proper number of hidden neurons due to the nonoptimal input weights and hidden biases. In this paper, a new model selection method of ELM based on multi-objective optimization is proposed to obtain compact networks with good generalization ability. First, a new leave-one-out (LOO) error bound of ELM is derived, and it can be calculated with negligible computational cost once the ELM training is finished. Furthermore, the hidden nodes are added to the network one-by-one, and at each step, a multi-objective optimization algorithm is used to select optimal input weights by minimizing this LOO bound and the norm of output weight simultaneously in order to avoid over-fitting. Experiments on five UCI regression data sets are conducted, demonstrating that the proposed algorithm can generally obtain better generalization performance with more compact network than the conventional gradient-based back-propagation method, original ELM and evolutionary ELM.  相似文献   

4.
In this paper, we present a fast learning fully complex-valued extreme learning machine classifier, referred to as ‘Circular Complex-valued Extreme Learning Machine (CC-ELM)’ for handling real-valued classification problems. CC-ELM is a single hidden layer network with non-linear input and hidden layers and a linear output layer. A circular transformation with a translational/rotational bias term that performs a one-to-one transformation of real-valued features to the complex plane is used as an activation function for the input neurons. The neurons in the hidden layer employ a fully complex-valued Gaussian-like (‘sech’) activation function. The input parameters of CC-ELM are chosen randomly and the output weights are computed analytically. This paper also presents an analytical proof to show that the decision boundaries of a single complex-valued neuron at the hidden and output layers of CC-ELM consist of two hyper-surfaces that intersect orthogonally. These orthogonal boundaries and the input circular transformation help CC-ELM to perform real-valued classification tasks efficiently.Performance of CC-ELM is evaluated using a set of benchmark real-valued classification problems from the University of California, Irvine machine learning repository. Finally, the performance of CC-ELM is compared with existing methods on two practical problems, viz., the acoustic emission signal classification problem and a mammogram classification problem. These study results show that CC-ELM performs better than other existing (both) real-valued and complex-valued classifiers, especially when the data sets are highly unbalanced.  相似文献   

5.
Considering the uncertainty of hidden neurons, choosing significant hidden nodes, called as model selection, has played an important role in the applications of extreme learning machines(ELMs). How to define and measure this uncertainty is a key issue of model selection for ELM. From the information geometry point of view, this paper presents a new model selection method of ELM for regression problems based on Riemannian metric. First, this paper proves theoretically that the uncertainty can be characterized by a form of Riemannian metric. As a result, a new uncertainty evaluation of ELM is proposed through averaging the Riemannian metric of all hidden neurons. Finally, the hidden nodes are added to the network one by one, and at each step, a multi-objective optimization algorithm is used to select optimal input weights by minimizing this uncertainty evaluation and the norm of output weight simultaneously in order to obtain better generalization performance. Experiments on five UCI regression data sets and cylindrical shell vibration data set are conducted, demonstrating that the proposed method can generally obtain lower generalization error than the original ELM, evolutionary ELM, ELM with model selection, and multi-dimensional support vector machine. Moreover, the proposed algorithm generally needs less hidden neurons and computational time than the traditional approaches, which is very favorable in engineering applications.  相似文献   

6.
极限学习机(ELM)由于高效的训练方式被广泛应用于分类回归,然而不同的输入权值在很大程度上会影响其学习性能。为了进一步提高ELM的学习性能,针对ELM的输入权值进行了研究,充分利用图像局部感知的稀疏性,将局部感知的方法运用到基于自动编码器的ELM(ELM-AE)上,提出了局部感知的类限制极限学习机(RF-C2ELM)。通过对MNIST数据集进行分类问题分析实验,实验结果表明,在具有相同隐层结点数的条件下,提出的方法能够获得更高的分类精度。  相似文献   

7.
In order to overcome the disadvantage of the traditional algorithm for SLFN (single-hidden layer feedforward neural network), an improved algorithm for SLFN, called extreme learning machine (ELM), is proposed by Huang et al. However, ELM is sensitive to the neuron number in hidden layer and its selection is a difficult-to-solve problem. In this paper, a self-adaptive mechanism is introduced into the ELM. Herein, a new variant of ELM, called self-adaptive extreme learning machine (SaELM), is proposed. SaELM is a self-adaptive learning algorithm that can always select the best neuron number in hidden layer to form the neural networks. There is no need to adjust any parameters in the training process. In order to prove the performance of the SaELM, it is used to solve the Italian wine and iris classification problems. Through the comparisons between SaELM and the traditional back propagation, basic ELM and general regression neural network, the results have proven that SaELM has a faster learning speed and better generalization performance when solving the classification problem.  相似文献   

8.
Extreme learning machine (ELM) [G.-B. Huang, Q.-Y. Zhu, C.-K. Siew, Extreme learning machine: a new learning scheme of feedforward neural networks, in: Proceedings of the International Joint Conference on Neural Networks (IJCNN2004), Budapest, Hungary, 25-29 July 2004], a novel learning algorithm much faster than the traditional gradient-based learning algorithms, was proposed recently for single-hidden-layer feedforward neural networks (SLFNs). However, ELM may need higher number of hidden neurons due to the random determination of the input weights and hidden biases. In this paper, a hybrid learning algorithm is proposed which uses the differential evolutionary algorithm to select the input weights and Moore-Penrose (MP) generalized inverse to analytically determine the output weights. Experimental results show that this approach is able to achieve good generalization performance with much more compact networks.  相似文献   

9.
Extreme learning machine (ELM) is widely used in complex industrial problems, especially the online-sequential extreme learning machine (OS-ELM) plays a good role in industrial online modeling. However, OS-ELM requires batch samples to be pre-trained to obtain initial weights, which may reduce the timeliness of samples. This paper proposes a novel model for the online process regression prediction, which is called the Recurrent Extreme Learning Machine (Recurrent-ELM). The nodes between the hidden layers are connected in Recurrent-ELM, thus the input of the hidden layer receives both the information from the current input layer and the previously hidden layer. Moreover, the weights and biases of the proposed model are generated by analysis rather than random. Six regression applications are used to verify the designed Recurrent-ELM, compared with extreme learning machine (ELM), fast learning network (FLN), online sequential extreme learning machine (OS-ELM), and an ensemble of online sequential extreme learning machine (EOS-ELM), the experimental results show that the Recurrent-ELM has better generalization and stability in several samples. In addition, to further test the performance of Recurrent-ELM, we employ it in the combustion modeling of a 330 MW coal-fired boiler compared with FLN, SVR and OS-ELM. The results show that Recurrent-ELM has better accuracy and generalization ability, and the theoretical model has some potential application value in practical application.  相似文献   

10.
为了解决传统的单一负荷预测模型精度低以及常规智能算法在解决高维、多模复杂问题时容易陷入局部最优的问题,提出了一种结合混沌纵横交叉的粒子群算法(CC-PSO)优化极限学习机(ELM)的短期负荷预测模型。ELM的泛化能力与其输入权值和隐含层偏置密切相关,采用结合混沌纵横交叉的粒子群算法优化ELM的输入权值与隐含层偏置,提高了ELM的泛化能力和预测精度。选择广东某地区实际电网负荷数据进行分析,研究结果表明,相对于BP神经网络和支持向量机,ELM具有更高的泛化能力和预测精度;CC-PSO相对于粒子群和遗传算法具有更高的全局搜索能力,CC-PSO-ELM模型具有较高的负荷预测精度。  相似文献   

11.
In this paper, we develop an online sequential learning algorithm for single hidden layer feedforward networks (SLFNs) with additive or radial basis function (RBF) hidden nodes in a unified framework. The algorithm is referred to as online sequential extreme learning machine (OS-ELM) and can learn data one-by-one or chunk-by-chunk (a block of data) with fixed or varying chunk size. The activation functions for additive nodes in OS-ELM can be any bounded nonconstant piecewise continuous functions and the activation functions for RBF nodes can be any integrable piecewise continuous functions. In OS-ELM, the parameters of hidden nodes (the input weights and biases of additive nodes or the centers and impact factors of RBF nodes) are randomly selected and the output weights are analytically determined based on the sequentially arriving data. The algorithm uses the ideas of ELM of Huang developed for batch learning which has been shown to be extremely fast with generalization performance better than other batch training methods. Apart from selecting the number of hidden nodes, no other control parameters have to be manually chosen. Detailed performance comparison of OS-ELM is done with other popular sequential learning algorithms on benchmark problems drawn from the regression, classification and time series prediction areas. The results show that the OS-ELM is faster than the other sequential algorithms and produces better generalization performance  相似文献   

12.
Evolutionary selection extreme learning machine optimization for regression   总被引:2,自引:1,他引:1  
Neural network model of aggression can approximate unknown datasets with the less error. As an important method of global regression, extreme learning machine (ELM) represents a typical learning method in single-hidden layer feedforward network, because of the better generalization performance and the faster implementation. The “randomness” property of input weights makes the nonlinear combination reach arbitrary function approximation. In this paper, we attempt to seek the alternative mechanism to input connections. The idea is derived from the evolutionary algorithm. After predefining the number L of hidden nodes, we generate original ELM models. Each hidden node is seemed as a gene. To rank these hidden nodes, the larger weight nodes are reassigned for the updated ELM. We put L/2 trivial hidden nodes in a candidate reservoir. Then, we generate L/2 new hidden nodes to combine L hidden nodes from this candidate reservoir. Another ranking is used to choose these hidden nodes. The fitness-proportional selection may select L/2 hidden nodes and recombine evolutionary selection ELM. The entire algorithm can be applied for large-scale dataset regression. The verification shows that the regression performance is better than the traditional ELM and Bayesian ELM under less cost gain.  相似文献   

13.
Extreme learning machine (ELM) is widely used in training single-hidden layer feedforward neural networks (SLFNs) because of its good generalization and fast speed. However, most improved ELMs usually discuss the approximation problem for sample data with output noises, not for sample data with noises both in input and output values, i.e., error-in-variable (EIV) model. In this paper, a novel algorithm, called (regularized) TLS-ELM, is proposed to approximate the EIV model based on ELM and total least squares (TLS) method. The proposed TLS-ELM uses the idea of ELM to choose the hidden weights, and applies TLS method to determine the output weights. Furthermore, the perturbation quantities of hidden output matrix and observed values are given simultaneously. Comparison experiments of our proposed TLS-ELM with least square method, TLS method and ELM show that our proposed TLS-ELM has better accuracy and less training time.  相似文献   

14.
杨菊  袁玉龙  于化龙 《计算机科学》2016,43(10):266-271
针对现有极限学习机集成学习算法分类精度低、泛化能力差等缺点,提出了一种基于蚁群优化思想的极限学习机选择性集成学习算法。该算法首先通过随机分配隐层输入权重和偏置的方法生成大量差异的极限学习机分类器,然后利用一个二叉蚁群优化搜索算法迭代地搜寻最优分类器组合,最终使用该组合分类测试样本。通过12个标准数据集对该算法进行了测试,该算法在9个数据集上获得了最优结果,在另3个数据集上获得了次优结果。采用该算法可显著提高分类精度与泛化性能。  相似文献   

15.
To solve the problem of improving the regression accuracy and model stability of the extreme learning machine(ELM), a new approach based on an improved M-estimation optimized double-parallel extreme learning machine is proposed in this study, namely robust double-parallel extreme learning machine(RD-ELM). Firstly, RD-ELM is constructed with a double parallel forward structure, thus the information can be received from both hidden layer neurons and input layer neurons. Secondly, we use an improved M-estimation to calculate output weights of neural network by iteratively reweighted Least-Squares Estimation(LSE), with weights assigned by the least absolute residual estimation of the samples. Finally, we establish a regression prediction model utilized to test the goodness of fit in a SinC function and verify the regression ability in eight benchmark regression problems. Then the proposed method is applied to an actual operational condition of a power plant. Experimental results show that the proposed method can efficiently process the influence of outliers and noise with strong anti-jamming ability. Compared with other methods, RD-ELM has superior performance that is stronger robustness and better generalization performance in many benchmark data and practical experiments.  相似文献   

16.
正负模糊规则系统、极限学习机与图像分类   总被引:1,自引:1,他引:0       下载免费PDF全文
传统的图像分类一般只利用了图像的正规则,忽略了负规则在图像分类中的作用。Nguyen将负规则引入图像分类,提出将正负模糊规则相结合形成正负模糊规则系统,并将其用于遥感图像和自然图像的分类。实验证明,其在图像分类过程中取得了很好的效果。他们提出的前馈神经网络模型在调整权值时利用了梯度下降法,由于步长选择不合理或陷入局部最优从而使训练速度受到了限制。极限学习机(ELM)是一种单隐层前馈神经网络(SLFN)学习算法,具有学习速度快,泛化性能好的优点。本文证明了极限学习机与正负模糊规则系统的实质是等价的,遂将其用于图像分类。实验结果说明了极限学习机能很好的利用正负模糊规则相结合的方法对图像进行分类,实验结果较为理想。  相似文献   

17.
罗庚合 《计算机应用》2013,33(7):1942-1945
针对极限学习机(ELM)算法随机选择输入层权值的问题,借鉴第2类型可拓神经网络(ENN-2)聚类的思想,提出了一种基于可拓聚类的ELM(EC-ELM)神经网络。该神经网络是以隐含层神经元的径向基中心向量作为输入层权值,采用可拓聚类算法动态调整隐含层节点数目和径向基中心,并根据所确定的输入层权值,利用Moore-Penrose广义逆快速完成输出层权值的求解。同时,对标准的Friedman#1回归数据集和Wine分类数据集进行测试,结果表明,EC-ELM提供了一种简便的神经网络结构和参数学习方法,并且比基于可拓理论的径向基函数(ERBF)、ELM神经网络具有更高的建模精度和更快的学习速度,为复杂过程的建模提供了新思路。  相似文献   

18.
高频地波雷达(High-frequency surface wave radar,HFSWR)在超视距舰船目标检测跟踪中有广泛应用.然而,HFSWR工作频段的电磁环境十分复杂,舰船目标信号往往被淹没在各种噪声中.本文提出一种基于最优误差自校正极限学习机(Optimized error self-adjustment e...  相似文献   

19.
为了提高目标威胁度估计的精确度,建立了反向学习磷虾群算法(OKH)优化极限学习机的目标威胁估计模型(OKH-ELM),提出基于此模型的算法。该模型使用反向学习策略优化磷虾群算法,并通过改进后的磷虾群算法优化极限学习机初始输入权重和偏置,使优化后的极限学习机能够对威胁度测试样本集做更好的预测。实验结果显示,OKH算法能够更好地优化极限学习机的权值与阈值,使建立的极限学习机目标威胁估计模型具有更高的预测精度和更强的泛化能力,能够精准、有效地实现目标威胁估计。  相似文献   

20.
Symmetric extreme learning machine   总被引:1,自引:1,他引:0  
Extreme learning machine (ELM) can be considered as a black-box modeling approach that seeks a model representation extracted from the training data. In this paper, a modified ELM algorithm, called symmetric ELM (S-ELM), is proposed by incorporating a priori information of symmetry. S-ELM is realized by transforming the original activation function of hidden neurons into a symmetric one with respect to the input variables of the samples. In theory, S-ELM can approximate N arbitrary distinct samples with zero error. Simulation results show that, in the applications where there exists the prior knowledge of symmetry, S-ELM can obtain better generalization performance, faster learning speed, and more compact network architecture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号