共查询到20条相似文献,搜索用时 0 毫秒
1.
R. Licheri R. Orrù C. Musa A. M. Locci G. Cao 《International Journal of Self-Propagating High-Temperature Synthesis》2009,18(1):15-24
The combination of the SHS technique and the Spark Plasma Sintering (SPS) technology was adopted in this work for the fabrication of fully dense MB2-SiC and MB2-MC-SiC (M = Zr, Hf) Ultra High Temperature Ceramics (UHTCs). Specifically, Zr or Hf, B4C, Si, and (for the cases of ternary systems) graphite powders were first reacted by SHS to successfully form the desired composites. The resulting powders were then subjected to consolidation by SPS. In particular, by setting a dwell temperature level of 1800°C, a mechanical pressure of 20 MPa, and a non-isothermal heating time of 10 min, products with relative densities ≥98.5% were obtained for the all systems investigated within 30 min of total processing time. The characteristics of the resulting dense UHTCs, i.e. hardness, fracture toughness, and oxidation resistance, are similar to, and in some cases superior than, those related to analogous products synthesized by alternative, less rapid, methods. The article is published in the original. 相似文献
2.
《Ceramics International》2020,46(12):20429-20436
In this research, for the first time, SnO2-based varistors were fabricated via spark plasma sintering technique (SPS) and the microstructure and electrical properties of these varistors were investigated. Furthermore, the effect of post-annealing temperature in oxygen atmosphere on electrical properties of the SPSed samples was studied. The SPS process was performed at the sintering temperatures of 600, 650, and 700 ᵒC for 15 min with a maximum pressure of 90 MPa under vacuum condition. The SPSed sample which was sintered at 650 ᵒC possessed maximum density of 98% and the ultra-fine-grained microstructure with the mean grain size of 380 nm. Surprisingly, all SPSed samples exhibited Ohmic behavior with very low electric resistances. After post-annealing in oxygen atmosphere, Ohmic to non-Ohmic transition was observed in SPSed samples. The oxygen deficiency during the SPS process was responsible for the Ohmic characteristic of SPSed samples. Post-annealing of SPSed samples in the oxygen atmosphere resulted in Schottky barriers formation through oxygen adsorption at grain boundaries. The sample post-annealed at 1050 ᵒC presented the best non-Ohmic parameters including high breakdown electric field of 4500 V/cm and the nonlinear coefficient of 13. These electrical parameters are comparable with the conventional-sintered samples which was sintered at 1300 ᵒC and its breakdown electric field and nonlinear coefficient were equal to 900 V/cm and 8, respectfully. 相似文献
3.
《Ceramics International》2017,43(2):2170-2173
HfB2-x vol%CNTs (x=0, 5, 10, and 15) composites are prepared by spark plasma sintering. The influence of CNTs content and sintering temperature on densification, microstructure and mechanical properties is studied. Compared with pure HfB2 ceramic, the sinterability of HfB2-CNTs composites is remarkably improved by the addition of CNTs. Appropriate addition of CNTs (10 vol%) and sintering temperature (1800 °C) can achieve the highest mechanical properties: the hardness, flexural strength and fracture toughness are measured to be 21.8±0.5 GPa, 894±60 MPa, and 7.8±0.2 MPa m1/2, respectively. This is contributed to the optimal combination of the relative density, grain size and the dispersion of CNTs. The crack deflection, CNTs debonding and pull-out are observed and supposed to exhaust more fracture energy during the fracture process. 相似文献
4.
《Ceramics International》2017,43(11):8475-8481
ZrC-based composites were consolidated from ZrC and TiB2 powders by the Spark Plasma Sintering (SPS) technique at 1685 °C and 1700 °C for 300 s under 40-50-60 MPa. Densification, crystalline phases, microstructure, mechanical properties and oxidation behavior of the composites were investigated. The sintered bodies were composed of a (Zr,Ti)C solid solution and a ZrB phase. The densification behaviors of the composites were improved by increasing the TiB2 content and applied pressure. The highest value of hardness, 21.64 GPa, was attained with the addition of 30 vol% TiB2. Oxidation tests were performed at 900 °C for 2 h and the formation of ZrO2, TiO2 and B2O3 phases were identified by using XRD. 相似文献
5.
K. L. Smirnov 《International Journal of Self-Propagating High-Temperature Synthesis》2009,18(2):92-96
Investigated was the spark plasma sintering (SPS) of sialon ceramics from SHS-produced powders. Experimentally established
were (a) sintering temperatures that ensure a required density, phase composition, and microstructure of sintered multicomponent
sialon ceramics, (b) individual stages of the SPS process, and (c) the effect of starting powder composition on the phase
composition and microstructure of sintered sialon ceramics.
相似文献
6.
Behzad Nayebi Mehdi Shahedi Asl Maryam Akhlaghi Zohre Ahmadi Seyed Ali Tayebifard Esmaeil Salahi Mohammadreza Shokouhimehr Mohsen Mohammadi 《Ceramics International》2021,47(9):11929-11934
A TiB2–Ti3AlC2 ceramic was manufactured by spark plasma sintering at 1900 °C temperature for 7 min soaking time under 30 MPa biaxial pressure. The role of Ti3AlC2 additive on the microstructure development, densification behavior, phase evolution, and hardness of the ceramic composite were studied. The phase characterization and microstructural investigations unveiled that the Ti3AlC2 MAX phase decomposes at the initial stages of the sintering. The in-situ formed phases, induced by the decomposition of Ti3AlC2 additive, were identified and scrutinized by XRD and FESEM/EDS techniques as well as thermodynamics principles. The sintered TiB2–Ti3AlC2 ceramic approached a near full density of ~99% and a hardness of ~28 GPa. The densification mechanism and sintering phenomena were discussed and graphically illustrated. 相似文献
7.
Awadesh Kumar Mallik Mitun Das Sumana Ghosh Dibyendu Chakravarty 《Ceramics International》2019,45(9):11281-11286
Laser melting of Ti-diamond powders have been found to enhance the mechanical properties of technologically important material like titanium matrix composite (TMC). However, there is a tendency for the diamond to graphitise during the laser melting process. In order to overcome this fallacy, an alternate processing route, namely, spark plasma sintering (SPS) was adopted for fabricating the TMC's. A wide range of powder compositions varying from 5 to 50?wt percentage of diamond (0.25?μm) was added to titanium and the as-sintered compacts were investigated by X-ray diffraction (XRD), Raman spectroscopy, Scanning Electron Microscope (SEM), and Energy Dispersive Spectroscopy (EDAX). In-situ phase changes were observed with increase in diamond content in the composition. Addition of diamond upto 15% led to formation of a mixed Ti and TiC phase in the matrix. Interestingly there was no trace of metallic titanium with 20% diamond in the composition and a TiC-only phase was observed, corroborated by an abrupt increase in hardness to 1076 Hv. At even higher diamond percentages there was trace of unreacted carbon along with TiC. This work indicates, for the first time, the use of SPS as an alternate route for fabricating in-situ TMCs with enhanced mechanical properties. 相似文献
8.
《Ceramics International》2017,43(4):3547-3555
Hafnium diboride (HfB2) ceramics were in-situ synthesized and densified by the spark plasma sintering (SPS) method using HfO2 and amorphous boron (B) as starting powders. Both synthesis and densification processes were succesfully accomplished in a single SPS cycle with one/two step heating schedules, which were designed by considering thermodynamic calculations made by Factsage software. In two step heating schedule, soaking at 1000 °C, which was supposed to be the synthesis temperature of HfB2 particles, caused a creep like behaviour in final ceramic microstructures. A single step synthesis/densification schedule at 2050 °C with a 30 min hold time under 60 MPa uniaxial pressure leads to obtain monolithic HfB2 ceramics up to 94% of it's theoretical density. Considering the literature, low hardness values (max. 12 GPa) were achieved, which were directly attributed to the low bonding between HfB2 grains in terms of the residual stresses occurred during the synthesis and cooling steps. Samples produced by applying one step heating schedule showed transgranural fracture behaviour with a, fracture toughness of 3.12 MPa m1/2. The fracture toughness of the samples produced by applying two step heating schedule was higher (5,06 MPa m1/2) and the fracture mode changed from transgranular to mixed mode. 相似文献
9.
Christophe Laurent Geoffroy Chevallier Alicia Weibel Alain Peigney Claude Estournès 《Carbon》2008,46(13):1812-1816
Bulk samples of double-walled carbon nanotubes are prepared for the first time. The best spark plasma sintering conditions are (1100 °C, 100 MPa). Raman spectroscopy and scanning electron microscopy show that the nanotubes are undamaged. The density is equal to 1.29 g cm−3 and the pores are all below 6 nm in diameter. The electrical conductivity is equal to 1650 S cm−1. The transverse fracture strength is equal to 47 MPa. 相似文献
10.
《Journal of the European Ceramic Society》2014,34(6):1471-1479
The present work describes a simple process to synthesise HfB2 powder with sub-micron sized particles. Hafnium chloride and boric acid were used as the elemental sources whilst several carbon sources including sucrose, graphite, carbon black, carbon nanotubes and liquid and powder phenolic resin were used. The carbon sources were characterised using thermogravimetric analysis and transmission electron microscope. The mechanism by which the structure of the carbon source used, affects the size and morphology of the resultant HfB2 powder was studied; the HfB2 powders were characterised using X-ray diffraction and scanning and transmission electron microscopy. The powder synthesised using powder phenolic resin had a surface area of 21 m2 g−1 and a particle size distribution between 30 and 150 nm. This was sintered using SPS to a relative density of 94% of theoretical density (TD) at 2100 °C and 50 MPa pressure without the help of any sintering aids. 相似文献
11.
Lixia Cheng Zhipeng Xie Guanwei Liu 《Journal of the European Ceramic Society》2013,33(15-16):2971-2977
By adding a small amount of tungsten carbide (WC) as sintering aids, nearly fully dense TiC ceramics were obtained by spark plasma sintering at 1450–1600 °C. The results show that the densification temperature of TiC ceramic was significantly decreased with the addition of 3.5 wt% WC. Compared with the monolithic TiC, the densification temperature of TiC–3.5 wt% WC is lower by ~150 °C and no deterioration of mechanical properties is observed. The TiC composite sintered at 1600 °C exhibits full density, a Vickers hardness of 28.2 ± 1.2 MPa, a flexural strength of 599.5 ± 34.7 MPa and a fracture toughness of 6.3 ± 1.4 MPa m1/2. 相似文献
12.
Seyed Ali Delbari Behzad Nayebi Ehsan Ghasali Mohammadreza Shokouhimehr Mehdi Shahedi Asl 《Ceramics International》2019,45(3):3207-3216
In this research, we investigated the effects of SiC and multi-walled carbon nanotube (MWCNTs) addition on the densification and microstructure of titanium nitride (TiN) ceramics. Four samples including monolithic TiN, TiN-5?wt% MWCNTs, TiN-20?vol% SiC and TiN-20?vol% SiC-5?wt% MWCNTs were prepared by spark plasma sintering at 1900?°C for 7?min under 40?MPa pressure. X-ray powder diffraction patterns and scanning electron microscope (SEM) micrographs of the prepared ceramics showed that no new phase was formed during the sintering process. The highest calculated relative density was related to the TiN ceramic doped with 20?vol% SiC, while the sample doped with 5?wt% MWCNTs presented the lowest density. In addition, the SEM investigations revealed that the addition of sintering aids e.g. SiC and MWCNTs leads to a finer microstructure ceramic. These additives generally remain within the spaces among the TiN particles and prohibit extensive grain growth in the fabricated ceramics. 相似文献
13.
《Journal of the European Ceramic Society》2005,25(7):1057-1065
The high sintering temperature required for aluminum nitride (AlN) at typically 1800 °C, is an impediment to its development as an engineering material. Spark plasma sintering (SPS) of AlN is carried out with samarium oxide (Sm2O3) as sintering additive at a sintering temperature as low as 1500–1600 °C. The effect of sintering temperature and SPS cycle on the microstructure and performance of AlN is studied. There appears to be a direct correlation between SPS temperature and number of repeated SPS sintering cycle per sample with the density of the final sintered sample. The addition of Sm2O3 as a sintering aid (1 and 3 wt.%) improves the properties and density of AlN noticeably. Thermal conductivity of AlN samples improves with increase in number of SPS cycle (maximum of 2) and sintering temperature (up to 1600 °C). Thermal conductivity is found to be greatly improved with the presence of Sm2O3 as sintering additive, with a thermal conductivity value about 118 W m−1 K−1) for the 3 wt.% Sm2O3-doped AlN sample SPS at 1500 °C for 3 min. Dielectric constant of the sintered AlN samples is dependent on the relative density of the samples. The number of repeated SPS cycle and sintering aid do not, however, cause significant elevation of the dielectric constant of the final sintered samples. Microstructures of the AlN samples show that, densification of AlN sample is effectively enhanced through increase in the operating SPS temperature and the employment of multiple SPS cycles. Addition of Sm2O3 greatly improves the densification of AlN sample while maintaining a fine grain structure. The Sm2O3 dopant modifies the microstructures to decidedly faceted AlN grains, resulting in the flattening of AlN–AlN grain contacts. 相似文献
14.
Sea-Hoon Lee Hidehiko Tanaka Yutaka Kagawa 《Journal of the European Ceramic Society》2009,29(10):2087-2095
Aluminum borocarbide powders (Al3BC3 and Al8B4C7) were synthesized, and the ternary powders were used as a sintering additive of SiC. The densification of SiC was nearly completed at 1670 °C using spark plasma sintering (SPS) and pressureless sintering was possible at 1950 °C. The sintering behavior of SiC using the new additive systems was nearly identical with that using the conventional Al–B–C system, but grain growth was suppressed when adding the borocarbides. In addition, oxidation of the fine additive powders did not intensively occur in air, which has been a problem in the case of the Al–B–C system for industrial application. The hardness, Young's modulus and fracture toughness of a sintered SiC specimen were 21.6 GPa, 439 GPa and 4.6 MPa m1/2, respectively. The ternary borocarbide powders are efficient sintering additives of SiC. 相似文献
15.
E. Zapata-Solvas D.D. Jayaseelan H.T. Lin P. Brown W.E. Lee 《Journal of the European Ceramic Society》2013,33(7):1373-1386
Flexural strengths at room temperature, at 1400 °C in air and at room temperature after 1 h oxidation at 1400 °C were determined for ZrB2- and HfB2-based ultra-high temperature ceramics (UHTCs). Defects caused by electrical discharge machining (EDM) lowered measured strengths significantly and were used to calculate fracture toughness via a fracture mechanics approach. ZrB2 with 20 vol.% SiC had room temperature strength of 700 ± 90 MPa, fracture toughness of 6.4 ± 0.6 MPa, Vickers hardness at 9.8 N load of 21.1 ± 0.6 GPa, 1400 °C strength of 400 ± 30 MPa and room temperature strength after 1 h oxidation at 1400 °C of 678 ± 15 MPa with an oxide layer thickness of 45 ± 5 μm. HfB2 with 20 vol.% SiC showed room temperature strength of 620 ± 50 MPa, fracture toughness of 5.0 ± 0.4 MPa, Vickers hardness at 9.8 N load of 27.0 ± 0.6 GPa, 1400 °C strength of 590 ± 150 MPa and room temperature strength after 1 h oxidation at 1400 °C of 660 ± 25 MPa with an oxide layer thickness of 12 ± 1 μm. 2 wt.% La2O3 addition to UHTCs slightly reduced mechanical performance while increasing tolerance to property degradation after oxidation and effectively aided internal stress relaxation during spark plasma sintering (SPS) cooling, as quantified by X-ray diffraction (XRD). Slow crack growth was suggested as the failure mechanism at high temperatures as a consequence of sharp cracks formation during oxidation. 相似文献
16.
Qingqing Yang Xuanru Ren Menglin Zhang Lu Zhu Hongao Chu Peizhong Feng 《Journal of the American Ceramic Society》2022,105(2):1568-1580
The HfB2-MoSi2-SiC oxygen blocking coatings were prepared by the spark plasma sintering (SPS) technique, whose oxidation inhibition ability was further strengthened by the pre-oxidation treatment. The effect of MoSi2 content and pre-oxidation treatment process on the oxygen blocking ability of the HfB2-MoSi2-SiC coating at 1973 K were conducted. After SPS, for the HfB2-MoSi2-SiC coatings with 20 wt%, 40 wt%, and 60 wt% MoSi2, the relative density of the coatings are 92.6%, 93.9%, and 85.6%, respectively. Owing to the enhanced compactness of the coatings, increasing MoSi2 content can significantly improve the protection efficiency of the coatings during the activation oxidation stage. However, due to the increased formation of gaseous by-products during the inerting oxidation stage, excessive MoSi2 weaken the oxidation inhibition ability of the coatings. The sufficient dispersion of Hf-oxides nanocrystals in the glass layer conduces to enhance the oxygen blocking ability of the glass layer, making the 40HfB2-40MoSi2-20SiC coating present the best oxidation protective ability. The pre-oxidation treatment at 1773 K conduces to form the steady glass layer with fewer defects at the cost of a lower oxidation consumption of the coating, which enhanced the protection efficiency of the coating from 96.9% to 99.8% and reduced the oxygen permeability from 0.13% to 0.028%. 相似文献
17.
《Ceramics International》2017,43(12):9005-9011
Silicon carbide (SiC) ceramics have superior properties in terms of wear, corrosion, oxidation, thermal shock resistance and high temperature mechanical behavior, as well. However, they can be sintered with difficulties and have poor fracture toughness, which hinder their widespread industrial applications. In this work, SiC-based ceramics mixed with 1 wt% and 3 wt% multilayer graphene (MLG), respectively, were fabricated by solid-state spark plasma sintering (SPS) at different temperatures. We report the processing of MLG/SiC composites, study their microstructure and mechanical properties and demonstrate the influence of MLG loading on the microstructure of sintered bodies. It was found that MLG improved the mechanical properties of SiC-based composites due to formation of special microstructure. Some toughening mechanism due to MLG pull-out and crack bridging of particles was also observed. Addition of 3 wt% MLG to SiC matrix increased the Vickers hardness and Young's modulus of composite, even at a sintering temperature of 1700 °C. Furthermore, the fracture toughness increased by 20% for the 1 wt% MLG-containing composite as compared to the monolithic SiC selected for reference material. We demonstrated that the evolved 4H-SiC grains, as well as the strong interactions among the grains in the porous free matrices played an important role in the mechanical properties of sintered composite ceramics. 相似文献
18.
《Ceramics International》2016,42(13):14642-14655
This study reports on the synthesis and consolidation of HfB2-HfO2 ceramic powders via mechanical activation-assisted autoclave processing followed by pressureless sintering (PS) or spark plasma sintering (SPS). HfCl4, B2O3 and Mg starting powders were mechanically activated for 5 min to obtain homogeneously blended precursors with active particle surfaces. Autoclave synthesis was carried out at a relatively low temperature at 500 °C for 6 or 12 h. As-synthesized powders were purified from reaction by-products such as MgO and MgCl2 by washing and acid leaching treatments. The characterization investigations of the as-synthesized and purified powders were performed by using an X-ray diffractometer (XRD), stereomicroscope (SM), scanning electron microscope (SEM) and particle size analyzer (PSA). The purified powders with an average particle size of about 190 nm comprised the HfB2 phase with an amount of 79.6 wt% in addition to the HfO2 phase and a very small amount of Mg2Hf5O12 phase after mechanical activation for 5 min and autoclave processing for 12 h. They were consolidated at 1700 °C both by PS for 6 h and SPS for 15 min. The Mg2Hf5O12 phase decomposed during sintering and bulk samples only had the HfB2 and HfO2 phases. The bulk properties of the sintered samples were characterized in terms of microstructure, density, microhardness and wear characteristics. The HfB2-HfO2 ceramics consolidated by PS exhibited poor densification rates. A considerable improvement was obtained in the relative density (~91%), microhardness (~16 GPa) and relative wear resistance (2.5) values of the HfB2-HfO2 ceramics consolidated by SPS. 相似文献
19.
Fatemeh Zakeri-Shahroudi Behrooz Ghasemi Hassan Abdolahpour Mansour Razavi 《International Journal of Applied Ceramic Technology》2022,19(3):1309-1318
In the current study, the sintering and mechanical properties of the Cr2AlC MAX phase synthesized by Spark plasma sintering at 1000, 1100, and 1200°C were investigated. The X-ray diffraction (XRD) patterns showed that the synthesis of the Cr2AlC MAX phase was associated with the presence of impurities such as Cr7C3 and Al2O3. On the basis of the FESEM images equipped with energy dispersive spectrometer, the MAX phases had been formed successfully and the length of these layers increased by enhancing the sintering temperature. The results of the density showed that by increasing the temperature, the density increases from 5.10 to 5.33 g/cm3 and finally decreases to 5.25 g/cm3. Vickers hardness method applied to determine the hardness of the samples showed that the hardness decreases from 8.52 to 8.07 GPa for the prepared samples. 相似文献
20.
Marc Singlard Nicolas Tessier-Doyen Geoffroy Chevallier Stéphane Oriol Guiseppe Fiore Bruno Vieille Claude Estournès Michel Vardelle Sylvie Rossignol 《Ceramics International》2018,44(18):22357-22364
The influence of spark plasma sintering (SPS) parameters (temperature, time, pressure) and the role of particle size on densification, microstructure and mechanical properties of commercial additive-free TiB2, SiC and composites thereof were studied by X-ray diffraction, scanning electron microscopy, the ultrasonic method and indentation. Three particle sizes of SiC and 2 of TiB2 were processed. An optimal cycle was found for TiB2 and SiC: 2000?°C, 3?min dwell time, and 100?MPa applied at 600?°C. The relative density of pure SiC increases linearly from 70% to 90% when the initial particle size decreases from 1.75?µm to 0.5?µm. Pure TiB2 was densified up to 87%. Using 2.5?wt% SiC in TiB2, the relative density increases to 97%. Young's modulus and the hardness of all samples were measured, with results discussed. The higher properties were obtained for additive-free TiB2–5%SiC with a relative density of 97% and with the Young's modulus and Vickers hardness values being close to 378?GPa and 23?GPa, respectively. 相似文献