首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper proposes a new method for handling the difficulty of multi-modality for the single-objective optimization problem (SOP). The method converts a SOP to an equivalent dynamic multi-objective optimization problem (DMOP). A new dynamic multi-objective evolutionary algorithm (DMOEA) is implemented to solve the DMOP. The DMOP has two objectives: the original objective and a niche-count objective. The second objective aims to maintain the population diversity for handling the multi-modality difficulty during the search process. Experimental results show that the performance of the proposed algorithm is significantly better than the state-of-the-art competitors on a set of benchmark problems and real world antenna array problems.  相似文献   

2.
Understanding the affective needs of customers is crucial to the success of product design. Hybrid Kansei engineering system (HKES) is an expert system capable of generating products in accordance with the affective responses. HKES consists of two subsystems: forward Kansei engineering system (FKES) and backward Kansei engineering system (BKES). In previous studies, HKES was based primarily on single-objective optimization, such that only one optimal design was obtained in a given simulation run. The use of multi-objective evolutionary algorithm (MOEA) in HKES was only attempted using the non-dominated sorting genetic algorithm-II (NSGA-II), such that very little work has been conducted to compare different MOEAs. In this paper, we propose an approach to HKES combining the methodologies of support vector regression (SVR) and MOEAs. In BKES, we constructed predictive models using SVR. In FKES, optimal design alternatives were generated using MOEAs. Representative designs were obtained using fuzzy c-means algorithm for clustering the Pareto front into groups. To enable comparison, we employed three typical MOEAs: NSGA-II, the Pareto envelope-based selection algorithm-II (PESA-II), and the strength Pareto evolutionary algorithm-2 (SPEA2). A case study of vase form design was provided to demonstrate the proposed approach. Our results suggest that NSGA-II has good convergence performance and hybrid performance; in contrast, SPEA2 provides the strong diversity required by designers. The proposed HKES is applicable to a wide variety of product design problems, while providing creative design ideas through the exploration of numerous Pareto optimal solutions.  相似文献   

3.
Finding a Pareto-optimal frontier is widely favorable among researchers to model existing conflict objectives in an optimization problem. Project scheduling is a well-known problem in which investigating a combination of goals eventuate in a more real situation. Although there are many different types of objectives based on the situation on hand, three basic objectives are the most common in the literature of the project scheduling problem. These objectives are: (i) the minimization of the makespan, (ii) the minimization of the total cost associated with the resources, and (iii) the minimization of the variability in resources usage. In this paper, three genetic-based algorithms are proposed for approximating the Pareto-optimal frontier in project scheduling problem where the above three objectives are simultaneously considered. For the above problem, three self-adaptive genetic algorithms, namely (i) A two-stage multi-population genetic algorithm (MPGA), (ii) a two-phase subpopulation genetic algorithm (TPSPGA), and (iii) a non-dominated ranked genetic algorithm (NRGA) are developed. The algorithms are tested using a set of instances built from benchmark instances existing in the literature. The performances of the algorithms are evaluated using five performance metrics proposed in the literature. Finally according to the technique for order preference by similarity to ideal solution (TOPSIS) the self-adaptive NRGA gained the highest preference rank, followed by the self-adaptive TPSPGA and MPGA, respectively.  相似文献   

4.
Optimum design problems are frequently formulated using a single excellence criterion (minimum mass or similar) with evolutionary algorithms engaged as decision-support tools. Alternatively, multi-objective formulations are used with a posteriori decision-making amongst the Pareto candidate solutions. The former typically introduces excessive simplification in the decision space and subjectivity, the latter leads to extensive numerical effort and postpones the compromise decision-making. In both cases, engineering excellence metrics such as minimum mass can be misleading in terms of performance of the respective design in the given operational environment. This paper presents an alternative approach to conceptual design where a compound objective function based on the Net Present Value (NPV) and Internal Rate of Return (IRR) aggregate performance metrics is developed. This formulation models the integral value delivered by the candidate designs over their respective life-cycles by applying value-based NPV discounting to all objectives. It can be incorporated as an a priori compromise and consequently viewed as a weighted sum of individual objectives corresponding to their economically faithful representation over the entire operational life-time of the designs. The multi-objective design optimization is consequently expanded from purely engineering terms to coupled engineering–financial decision support.  相似文献   

5.
Biometric systems aim at identifying humans by their characteristics or traits. This article addresses the problem of designing a biometric sensor management unit by optimizing the risk, which is modeled as a multi-objective optimization (MO) problem with global false acceptance rate and global false rejection rate as the two objectives. In practice, when multiple biometric sensors are used, the decision is taken locally at each sensor and the data are passed to the sensor manager. At the sensor manager, the data are fused using a fusion rule and the final decision is taken. The optimization process involves designing the data fusion rule and setting of the sensor thresholds. In this work, we employ a fuzzy dominance and decomposition-based multi-objective evolutionary algorithm (MOEA) called MOEA/DFD and compare its performance with two state-of-the-art MO algorithms: MOEA/D and NSGA-II in context to the risk minimization task. The algorithm introduces a fuzzy Pareto dominance concept to compare two solutions and uses the scalar decomposition method only when one of the solutions fails to dominate the other in terms of a fuzzy dominance level. The MO algorithms are simulated on different number of sensor setups consisting of three, six, and eight sensors. The a priori probability of imposter is also varied from 0.1 to 0.9 to verify the performance of the system with varying degrees of threat. One of the most significant advantages of using the MO framework is that with a single run, just by changing the decision-making logic applied to the obtained Pareto front, one can find the required threshold and decision strategies for varying threats of imposter. However, with single-objective optimization, one needs to run the algorithms each time with change in the threat of imposter. Thus, multi-objective formulation of the problem appears to be more useful and better than the single-objective one. In all the test instances, MOEA/DFD performs better than all the other algorithms.  相似文献   

6.
We study the use of neural networks as approximate models for the fitness evaluation in evolutionary design optimization. To improve the quality of the neural network models, structure optimization of these networks is performed with respect to two different criteria: One is the commonly used approximation error with respect to all available data, and the other is the ability of the networks to learn different problems of a common class of problems fast and with high accuracy. Simulation results from turbine blade optimizations using the structurally optimized neural network models are presented to show that the performance of the models can be improved significantly through structure optimization.We would like to thank the BMBF, grant LOKI, number 01 IB 001 C, for their financial support of our research.  相似文献   

7.
8.
区间多目标优化问题在实际应用中普遍存在且非常重要.为得到贴合决策者偏好的最满意解,采用边优化边决策的方法,提出一种交互进化算法.该算法通过请求决策者从部分非被支配解中选择一个最差解,提取决策者的偏好方向,基于该偏好方向设计反映候选解逼近性能的测度,将具有相同序值和决策者偏好的候选解排序.将所提方法应用于4个区间2目标优化问题,并与利用偏好多面体解决区间多目标优化问题的进化算法(PPIMOEA)和后验法比较,实验结果验证了所提出方法的有效性和高效性.  相似文献   

9.
A key feature of an efficient and reliable multi-objective evolutionary algorithm is the ability to maintain genetic diversity within a population of solutions. In this paper, we present a new diversity-preserving mechanism, the Genetic Diversity Evaluation Method (GeDEM), which considers a distance-based measure of genetic diversity as a real objective in fitness assignment. This provides a dual selection pressure towards the exploitation of current non-dominated solutions and the exploration of the search space. We also introduce a new multi-objective evolutionary algorithm, the Genetic Diversity Evolutionary Algorithm (GDEA), strictly designed around GeDEM and then we compare it with other state-of-the-art algorithms on a well-established suite of test problems. Experimental results clearly indicate that the performance of GDEA is top-level.  相似文献   

10.
This paper develops a new approach to the design of optimal residuals in order to diagnose incipient faults based on multi-objective optimization and genetic algorithms. In this approach the residual is generated via an observer. To reduce false and missed alarm rates in fault diagnosis, a number of performance indices are introduced into the observer design. Some performance indices are expressed in the frequency domain to take account of the frequency distributions of faults, noise and modelling uncertainties. All objectives then are reformulated into a set of inequality constraints on performance indices. A genetic algorithm is thus used to search for an optimal solution to satisfy these inequality constraints on performance indices. The approach developed is applied to a flight control system example, and simulation results show that incipient sensor faults can be detected reliably in the presence of modelling uncertainty.  相似文献   

11.
The paper presents strategies optimization for an existing automated warehouse located in a steelmaking industry. Genetic algorithms are applied to this purpose and three different popular algorithms capable to deal with multi-objective optimization are compared. The three algorithms, namely the Niched Pareto Genetic Algorithm, the Non-dominated Sorting Genetic Algorithm 2 and the Strength Pareto Genetic Algorithm 2, are described in details and the achieved results are widely discussed; moreover several statistical tests have been applied in order to evaluate the statistical significance of the obtained results.  相似文献   

12.
13.
在产品的模块化协同设计中,设计模块的划分是一个关键问题。为了满足实际应用对模块划分的多方面要求,采用多目标优化方法对设计结构矩阵进行聚类划分,该方法通过粒子群算法建立非支配解集,从中获得理想的划分方案。在聚类优化算法中,为了方便设置粒子的速度,提出了一种简易的编码方式对设计结构矩阵的聚类进行编码,在适应度函数中计算出了每个聚类的联系信息流量,在建立非支配解集时采用拥挤距离方法将多余的解删除。以轻武器模块化协同设计的例子对该方法进行了验证。  相似文献   

14.
15.
For stochastic multi-objective combinatorial optimization (SMOCO) problems, the adaptive Pareto sampling (APS) framework has been proposed, which is based on sampling and on the solution of deterministic multi-objective subproblems. We show that when plugging in the well-known simple evolutionary multi-objective optimizer (SEMO) as a subprocedure into APS, ε-dominance has to be used to achieve fast convergence to the Pareto front. Two general theorems are presented indicating how runtime complexity results for APS can be derived from corresponding results for SEMO. This may be a starting point for the runtime analysis of evolutionary SMOCO algorithms.  相似文献   

16.
Polyurethane is used for making mould in soft tooling (ST) process for producing wax/plastic components. These wax components are later used as pattern in investment casting process. Due to low thermal conductivity of polyurethane, cooling time in ST process is long. To reduce the cooling time, thermal conductive fillers are incorporated into polyurethane to make composite mould material. However, addition of fillers affects various properties of the ST process, such as stiffness of the mould box, rendering flow-ability of melt mould material, etc. In the present work, multi-objective optimization of various conflicting objectives (namely maximization of equivalent thermal conductivity, minimization of effective modulus of elasticity, and minimization of equivalent viscosity) of composite material are conducted using evolutionary algorithms (EAs) in order to design particle-reinforced polyurethane composites by finding the optimal values of design parameters. The design parameters include volume fraction of filler content, size and shape factor of filler particle, etc. The Pareto-optimal front is targeted by solving the corresponding multi-objective problem using the NSGA-II procedure. Then, suitable multi-criterion decision-making techniques are employed to select one or a small set of the optimal solution(s) of design parameter(s) based on the higher level information of the ST process for industrial applications. Finally, the experimental study with a typical real industrial application demonstrates that the obtained optimal design parameters significantly reduce the cooling time in soft tooling process keeping other processing advantages.  相似文献   

17.
Multi-objective evolutionary algorithms (MOEAs) have received increasing interest in industry because they have proved to be powerful optimizers. Despite the great success achieved, however, MOEAs have also encountered many challenges in real-world applications. One of the main difficulties in applying MOEAs is the large number of fitness evaluations (objective calculations) that are often needed before an acceptable solution can be found. There are, in fact, several industrial situations in which fitness evaluations are computationally expensive and the time available is very short. In these applications efficient strategies to approximate the fitness function have to be adopted, looking for a trade-off between optimization performance and efficiency. This is the case in designing a complex embedded system, where it is necessary to define an optimal architecture in relation to certain performance indexes while respecting strict time-to-market constraints. This activity, known as design space exploration (DSE), is still a great challenge for the EDA (electronic design automation) community. One of the most important bottlenecks in the overall design flow of an embedded system is due to simulation. Simulation occurs at every phase of the design flow and is used to evaluate a system which is a candidate for implementation. In this paper we focus on system level design, proposing an extensive comparison of the state-of-the-art of MOEA approaches with an approach based on fuzzy approximation to speed up the evaluation of a candidate system configuration. The comparison is performed in a real case study: optimization of the performance and power dissipation of embedded architectures based on a Very Long Instruction Word (VLIW) microprocessor in a mobile multimedia application domain. The results of the comparison demonstrate that the fuzzy approach outperforms in terms of both performance and efficiency the state of the art in MOEA strategies applied to DSE of a parameterized embedded system.  相似文献   

18.
为了预测硬件产品设计研发过程中的设计缺陷,提出利用贝叶斯网络构建产品设计缺陷评估模型。通过故障树建立评估模型的贝叶斯网络结构,利用证据推理方法确定评估模型的概率。研究案例表明,该方法可分析缺陷因素对设计缺陷的影响关系,实现对产品设计缺陷的定量预测,研究结果与实际情况对比具有较好的符合性。  相似文献   

19.
It is widely assumed that evolutionary algorithms for multi-objective optimization problems should use certain mechanisms to achieve a good spread over the Pareto front. In this paper, we examine such mechanisms from a theoretical point of view and analyze simple algorithms incorporating the concept of fairness. This mechanism tries to balance the number of offspring of all individuals in the current population. We rigorously analyze the runtime behavior of different fairness mechanisms and present illustrative examples to point out situations, where the right mechanism can speed up the optimization process significantly. We also indicate drawbacks for the use of fairness by presenting instances, where the optimization process is slowed down drastically.  相似文献   

20.
Nodes of wireless sensor networks (WSNs) are typically powered by batteries with a limited capacity. Thus, energy is a primary constraint in the design and deployment of WSNs. Since radio communication is in general the main cause of power consumption, the different techniques proposed in the literature to improve energy efficiency have mainly focused on limiting transmission/reception of data, for instance, by adopting data compression and/or aggregation. The limited resources available in a sensor node demand, however, the development of specifically designed algorithms. To this aim, we propose an approach to perform lossy compression on single node based on a differential pulse code modulation scheme with quantization of the differences between consecutive samples. Since different combinations of the quantization process parameters determine different trade-offs between compression performance and information loss, we exploit a multi-objective evolutionary algorithm to generate a set of combinations of these parameters corresponding to different optimal trade-offs. The user can therefore choose the combination with the most suitable trade-off for the specific application. We tested our lossy compression approach on three datasets collected by real WSNs. We show that our approach can achieve significant compression ratios despite negligible reconstruction errors. Further, we discuss how our approach outperforms LTC, a lossy compression algorithm purposely designed to be embedded in sensor nodes, in terms of compression rate and complexity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号