首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The BEM is developed for the analysis of plates with variable thickness resting on a nonlinear biparametric elastic foundation. The presented solution is achieved using the Analog Equation Method (AEM). According to the AEM the fourth-order partial differential equation with variable coefficients describing the response of the plate is converted to an equivalent linear problem for a plate with constant stiffness not resting on foundation and subjected only to an `appropriate' fictitious load under the same boundary conditions. The fictitious load is established using a technique based on the BEM and the solution of the actual problem is obtained from the known integral representation of the solution of the substitute problem, which is derived using the static fundamental solution of the biharmonic equation. The method is boundary-only in the sense that the discretization and the integration are performed only on the boundary. To illustrate the method and its efficiency, plates of various shapes are analyzed with linear and quadratic plate thickness variation laws resting on a nonlinear biparametric elastic foundation.  相似文献   

2.
The dynamic response of plane inhomogeneous anisotropic bodies made of linear viscoelastic materials is investigated. The mechanical behavior of the viscoelastic material is described by differential constitutive equations with fractional order derivatives. The governing equations, which are derived by considering the dynamic equilibrium of the plane body element, are two coupled linear fractional evolution partial differential equations in terms of the displacements, whose order is in general greater than two with respect to time derivatives. A method is presented to establish the additional required initial conditions beside the described initial displacements and velocities. Using the Analog Equation Method (AEM) in conjunction with the Domain Boundary Element Method (D/BEM) the governing equations are transformed into a system of multi-term ordinary fractional differential equations (FDEs), which are solved using the numerical method for multi-term FDEs developed recently by Katsikadelis. Numerical examples are presented, which not only demonstrate the efficiency of the solution procedure and validate its accuracy, but also permit a better understanding of the dynamic response of plane bodies described by different viscoelastic models.  相似文献   

3.
This paper presents a meshless method, based on coupling virtual boundary collocation method (VBCM) with the radial basis functions (RBF) and the analog equation method (AEM), to analyze generalized linear or nonlinear Poisson-type problems. In this method, the AEM is used to construct equivalent equations to the original differential equation so that a simpler fundamental solution of the Laplacian operator, instead of other complicated ones which are needed in conventional BEM, can be employed. While global RBF is used to approximate fictitious body force which appears when the analog equation method is introduced, and VBCM are utilized to solve homogeneous solution based on the superposition principle. As a result, a new meshless method is developed for solving nonlinear Poisson-type problems. Finally, some numerical experiments are implemented to verify the efficiency of the proposed method and numerical results are in good agreement with the analytical ones. It appears that the proposed meshless method is very effective for nonlinear Poisson-type problems.  相似文献   

4.
In this paper a BEM-based meshless solution is presented to buckling and vibration problems of Kirchhoff orthotropic plates with arbitrary shape. The plate is subjected to compressive centrally applied load together with arbitrarily transverse distributed or concentrated loading, while its edges are restrained by the most general linear boundary conditions. The resulting buckling and vibration problems are described by partial differential equations in terms of the deflection. Both problems are solved employing the Analog Equation Method (AEM). According to this method the fourth-order partial differential equation describing the response of the orthotropic plate is converted to an equivalent linear problem for an isotropic plate subjected only to a fictitious load under the same boundary conditions. The AEM is applied to the problem at hand as a boundary-only method by approximating the fictitious load with a radial basis function series. Thus, the method retains all the advantages of the pure BEM using a known simple fundamental solution. Example problems are presented for orthotropic plates, subjected to compressive or vibratory loading, to illustrate the method and demonstrate its efficiency and its accuracy.  相似文献   

5.
M. H. Zhao  W. Zhang 《Acta Mechanica》2014,225(7):1985-2004
This paper presents the analysis of the nonlinear dynamics for a composite laminated cantilever rectangular plate subjected to the supersonic gas flows and the in-plane excitations. The aerodynamic pressure is modeled by using the third-order piston theory. Based on Reddy’s third-order plate theory and the von Kármán-type equation for the geometric nonlinearity, the nonlinear partial differential equations of motion for the composite laminated cantilever rectangular plate under combined aerodynamic pressure and in-plane excitation are derived by using Hamilton’s principle. The Galerkin’s approach is used to transform the nonlinear partial differential equations of motion for the composite laminated cantilever rectangular plate to a two-degree-of-freedom nonlinear system under combined external and parametric excitations. The method of multiple scales is employed to obtain the four-dimensional averaged equation of the non-automatic nonlinear system. The case of 1:2 internal resonance and primary parametric resonance is taken into account. A numerical method is utilized to study the bifurcations and chaotic dynamics of the composite laminated cantilever rectangular plate. The frequency–response curves, bifurcation diagram, phase portrait and frequency spectra are obtained to analyze the nonlinear dynamic behavior of the composite laminated cantilever rectangular plate, which includes the periodic and chaotic motions.  相似文献   

6.
In this paper the Domain Decomposition Method (DDM) is developed for nonlinear analysis of both flat and space elastic membranes of complicated geometry which may have holes. The domain of the projection of the membrane on the xy plane is decomposed into non-overlapping subdomains and the membrane problem is solved sequentially in each subdomain starting from zero displacements on the virtual boundaries. The procedure is repeated until the traction continuity conditions are also satisfied on the virtual boundaries. The membrane problem in each subdomain is solved using the Analog Equation Method (AEM). According to this method the three coupled strongly nonlinear partial differential equations, governing the response of the membrane, are replaced by three uncoupled linear membrane equations (Poisson's equations) subjected to fictitious sources under the same boundary conditions. The fictitious sources are established using a meshless BEM procedure. Example problems are presented, for both flat and space membranes, which illustrate the method and demonstrate its efficiency and accuracy.  相似文献   

7.
The Meshless Analog Equation Method, a purely meshless method, is applied to the static analysis of cylindrical shell panels. The method is based on the concept of the analog equation of Katsikadelis, which converts the three governing partial differential equations in terms of displacements into three substitute equations, two of second order and one fourth order, under fictitious sources. The fictitious sources are represented by series of radial basis functions of multiquadric type. Thus the substitute equations can be directly integrated. This integration allows the representation of the sought solution by new radial basis functions, which approximate accurately not only the displacements but also their derivatives involved in the governing equations. This permits a strong formulation of the problem. Thus, inserting the approximate solution in the differential equations and in the associated boundary conditions and collocating at a predefined set of mesh-free nodal points, a system of linear equations is obtained, which gives the expansion coefficients of radial basis functions series that represent the solution. The minimization of the total potential of the shell results in the optimal choice of the shape parameter of the radial basis functions. The method is illustrated by analyzing several shell panels. The studied examples demonstrate the efficiency and the accuracy of the presented method.  相似文献   

8.
基于Karman板理论和线粘弹性Boltzmann叠加原理,建立了粘弹性对称铺设层合板的非线性积分—偏微分动力学方程。针对材料具积分型本构关系以及松弛模量为Prony级数的形式,应用Galerkin技术、Newmark方法和Newton-Cotes方法,给出了求解粘弹性层合结构非线性动力学问题的一种有效的数值算法。具体地求解了若干算例,且与相关文献进行了比较。  相似文献   

9.
在Lagrange变分法的基础上,推导出了应力应变关系服从分数导数Kelvin—Viogt本构关系的粘弹性梁的振动微分方程,并利用Zhang-Shimizu分数导数数值积分法得到了数值解,给出了数值算例,对分数导数粘弹性梁的振动特性进行了研究分析。  相似文献   

10.
利用Green函数可以将分数阶微分方程初值问题转化为等价的积分方程.近来此方法被应用于讨论非线性分数阶微分方程初值问题解的存在性.本文讨论菲线性分数阶脉冲微分方程初值问题,应用Green函数,将其转化为等价的积分方程,并设非线性项满足Carathéodory条件,利用非紧性测度的性质和M(o)nch,8不动点定理证明解的存在性.  相似文献   

11.
 A boundary-only solution is presented for dynamic analysis of elastic membranes under large deflections. The solution procedure is based on the analog equation method (AEM). According to this method, the three coupled nonlinear second order hyperbolic partial differential equations in terms of displacements, which govern the response of the membrane, are replaced with three Poisson's quasi-static equations under fictitious time dependent sources. The fictitious sources are established using a BEM-based procedure and the displacements as well as the stress resultants at any point are evaluated from their integrals representations. Numerical examples are presented which illustrate the method. Received 16 December 2000 / Accepted 25 April 2002  相似文献   

12.
二次非线性粘弹性圆板的2/1超谐解   总被引:3,自引:0,他引:3  
李银山  李欣业  刘波  崔锦华 《工程力学》2003,20(4):74-77,32
计及材料的非线性弹性和粘性性质,研究了圆板在简谐载荷作用下的2/1超谐解,导出了相应的非线性动力方程。提出一类强非线性动力系统的叠加迭代谐波平衡法。将描述动力系统的二阶常微分方程,化为基本解为未知函数的基本微分方程;及分岔解为未知函数的增量微分方程。通过叠加迭代谐波平衡法得出了圆板的2/1超谐解。同时,对叠加迭代谐波平衡法和数值积分法的精度进行了比较。并且讨论了2/1超谐解的渐近稳定性。  相似文献   

13.
A double scale asymptotic method (DSAM) is proposed for vibration modeling of large repetitive sandwich structures with a viscoelastic core. The method decomposes the initial nonlinear vibration problem into two small linear ones. The first one is defined on few basic cells while the second is a differential global amplitude equation with complex coefficients. Their numerical computations permit determination of the damping properties as well as pass and stop bands avoiding the direct computation on the whole structure. Viscoelastic frequency dependent core with fractional and anelastic displacement field models are considered. The resulting nonclassical problems are solved by asymptotic numerical method coupled with automatic differentiation. Based on the presented method, a large reduction of the needed computational time and memory is obtained. The accuracy and efficiency of the proposed method are validated with comparisons to the direct simulations by discretization of the whole structure using asymptotic numerical method coupled with automatic differentiation.  相似文献   

14.
Formulation of the problem for the feedback displacement control of a vibrating laminated plate with orthotropic piezoelectric sensors and actuators is given in terms of an integral equation. The objective is to develop a formulation which facilitates the numerical solution to obtain the eigenfrequencies and eigenfunctions of the piezo-controlled plate. The control is carried out via piezoelectric sensors and actuators which are of orthorhombic crystal class mm2 with poling in the z direction. The initial formulation of the problem is given in terms of a differential equation which is the conventional formulation most often used in the literature. The conversion to an integral equation formulation is achieved by introducing an explicit Green’s function. Explicit expressions for the kernel of the integral equation are given and the method of solution using the new formulation is outlined. The solution technique involves approximating the integral equation with an infinite system of linear equations and using a finite number of these equations to obtain the numerical results.  相似文献   

15.
纵向振动粘弹性桩的分叉和混沌运动   总被引:1,自引:3,他引:1  
研究了轴向周期载荷作用下非线性粘弹性嵌岩桩纵向振动的混沌运动。假定桩和土体分别满足Leaderman非线性粘弹性本构关系和线性粘弹性本构关系,得到的运动方程为非线性积分-偏微分方程;利用Galerkin方法将方程简化,并进行了数值计算。数值结果表明纵向振动的非线性粘弹性桩可以通过准周期分叉的方式进入混沌运动。  相似文献   

16.
The boundary knot method is a promising meshfree, integration-free, boundary-type technique for the solution of partial differential equations. It looks for an approximation of the solution in the linear span of a set of specialized radial basis functions that satisfy the governing equation of the problem. The boundary conditions are taken into account through the collocation technique. The specialized radial basis function for harmonic elastic and viscoelastic problems is derived, and a boundary knot method for the solution of these problems is proposed. The completeness issue regarding the proposed set of radial basis functions is discussed, and a formal proof of incompleteness for the circular ring problem is presented. In order to address the numerical performance of the proposed method, some numerical examples considering simple and complex domains are solved.  相似文献   

17.
A new BEM approach is presented for the plane elastostatic problem for nonhomogeneous anisotropic bodies. In this case the response of the body is described by two coupled linear second order partial differential equations in terms of displacement with variable coefficient. The incapability of establishing the fundamental solution of the governing equations is overcome by uncoupling them using the concept of analog equation, which converts them to two Poisson’s equations, whose fundamental solution is known and the necessary boundary integral equations are readily obtained. This formulation introduces two additional unknown field functions, which physically represent the two components of a fictitious source. Subsequently, they are determined by approximating them globally with radial basis functions series. The displacements and the stresses are evaluated from the integral representation of the solution of the substitutes equations. The presented method maintains the pure boundary character of the BEM. The obtained numerical results demonstrate the effectiveness and accuracy of the method.  相似文献   

18.
A meshless method was presented, which couples the method of fundamental solutions (MFS) with radial basis functions (RBFs) and the analog equation method (AEM), to solve nonlinear problems. In this method, the AEM is used to convert the nonlinear governing equation into a corresponding linear inhomogeneous equation, so that a simpler fundamental solution can be employed. Then, the RBFs and the MFS are, respectively, used to construct the expressions of particular and homogeneous solution parts of the substitute equation, from which the approximate solution of the original problem and its derivatives involved in the governing equation are represented via the unknown coefficients. After satisfying all equations of the original problem at collocation points, a nonlinear system of equations can be obtained to determine all unknowns. Some numerical tests illustrate the efficiency of the method proposed.  相似文献   

19.
寇磊  白云 《振动与冲击》2014,33(8):141-147
基于弹性地基Pasternak双参数模型,利用分数阶微分得到黏弹性地基双参数模型,并在此基础上建立采用分数阶微分Kelvin模型的双参数黏弹性地基上弹性和黏弹性矩形板在动荷载作用下的动力方程;利用Galerkin方法和分段处理的数值计算方法求解四边简支的弹性和黏弹性地基板的动力方程,通过自由振动算例验证该求解方法的正确性;并分析冲击动荷载作用下分数阶微分Kelvin模型的分数阶、粘滞系数、水平剪切系数和模量参数对位移响应的影响。结果表明:分数阶微分黏弹性模型可以描述不同黏弹性材料的力学行为;分数阶取值0.5前后,矩形板位移响应值出现了不同的衰减发展形态;粘滞系数、水平剪切系数和模量系数取值越大,位移响应衰减速度越快。  相似文献   

20.
The problem of nonlinear aeroelasticity of a general laminated composite plate in supersonic air flow is examined. The classical plate theory along with the von-Karman nonlinear strains is used for structural modeling, and linear piston theory is used for aerodynamic modeling. The coupled partial differential equations of motion are derived by use of Hamilton’s principle and Galerkin’s method is used to reduce the governing equations to a system of nonlinear ordinary differential equations in time, which are then solved by a direct numerical integration method. Effects of in-plane force, static pressure differential, fiber orientation and aerodynamic damping on the nonlinear aeroelastic behavior of the plate are studied. Results show that the fiber orientation has significant effect on dynamic behavior of the plate and the asymmetric properties, changes the behavior of the limit cycle oscillation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号