首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Cyanide production has been reported from over 2500 plant species, including some members of the Brassicaceae. We report that the important invasive plant, Alliaria petiolata, produces levels of cyanide in its tissues that can reach 100 ppm fresh weight (FW), a level considered toxic to many vertebrates. In a comparative study, levels of cyanide in leaves of young first-year plants were 25 times higher than in leaves of young Arabidopsis thaliana plants and over 150 times higher than in leaves of young Brassica kaber, B. rapa, and B. napus. In first-year plants, cyanide levels were highest in young leaves of seedlings and declined with leaf age on individual plants. Leaves of young plants infested with green peach aphids (Myzus persicae) produced just over half as much cyanide as leaves of healthy plants, suggesting that aphid feeding led to loss of cyanide from intact tissues before analysis, or that aphid feeding inhibited cyanide precursor production. In a developmental study, levels of cyanide in the youngest and oldest leaf of young garlic mustard plants were four times lower than in the youngest and oldest leaf of young Sorghum sudanense (cv. Cadan 97) plants, but cyanide levels did not decline in these leaves with plant age as in S. sudanense. Different populations of garlic mustard varied moderately in the constitutive and inducible expression of cyanide in leaves, but no populations studied were acyanogenic. Although cyanide production could result from breakdown products of glucosinolates, no cyanide was detected in vitro from decomposition of sinigrin, the major glucosinolate of garlic mustard. These studies indicate that cyanide produced from an as yet unidentified cyanogenic compound is a part of the battery of chemical defenses expressed by garlic mustard.  相似文献   

2.
The Evolution of Increased Competitive Ability (EICA) hypothesis posits that invasive plants in introduced habitats with reduced herbivore pressure will evolve reduced levels of costly resistance traits. In light of this hypothesis, we examined the constitutive and inducible expression of five chemical defense traits in Alliaria petiolata from four invasive North American and seven native European populations. When grown under common conditions, significant variation among populations within continents was found for trypsin inhibitors and peroxidase activity, and glucosinolates and trypsin inhibitors were significantly jasmonate-inducible across populations. Across populations, constitutive levels of glucosinolates and trypsin inhibitors were negatively correlated with their degree of induction, with three North American populations tending to have lower constitutive levels and higher inducibility of glucosinolates than the seven European populations. Alliarinoside and isovitexin 6″-O-β-d-glucopyranoside levels were both higher in North American plants than in European plants, but levels of these compounds were generally increased by jasmonate in European plants and decreased by the same treatment in North American plants. Aside from the tendency for invasive populations to have reduced constitutive glucosinolate levels coupled with increased inducibility, little support for the predictions of EICA was evident in the chemical defenses that we studied.  相似文献   

3.
Potential allelopathic compounds of Juniperus ashei Buchh. (Ashe juniper) and their effect on a native grass were determined in laboratory and field studies. Solid-phase microextraction and gas chromatography/mass spectrometry were used to determine if monoterpenes found in the essential oils of J. ashei are released in leaf and litter leachate, as well as volatilized from leaf tissue. Camphor, bornyl acetate, and limonene were found in leaf and fresh litter leachates; however, degraded litter did not contain any of these compounds. Camphor was the most common potentially allelopathic compound found in J. ashei leaf and litter leachate and in volatiles from leaf tissue. The effects of leaf and litter tissue on the germination of Bouteloua curtipendula (Michx.) Torr. (side-oats grama) was tested by using the “sandwich agar method”. The highest germination of B. curtipendula (29.6%) occurred in the control, which was significantly higher than fresh litter (13.2%) and degraded litter (16.2%). The lowest germination (6.2%) occurred with J. ashei leaves. In the field experiment, aboveground dry mass of B. curtipendula was evaluated in relation to position within the canopy and intercanopy of J. ashei adult trees when light and water were held constant across locations. Aboveground dry mass of B. curtipendula was significantly greater in the intercanopies of J. ashei (163.7 g m2) compared to the dry mass in the understory (44.8 g m2) and dripline (44.5 g m2), suggesting some negative influence by J. ashei. Chemical analyses indicate that monoterpenes are released through leaching and volatilization from J. ashei, and germination and field studies suggest that these compounds inhibit B. curtipendula.  相似文献   

4.
We examined the allelochemical effects of control soil, native soil (treated soil), and leaf extracts of Phytolacca americana (pokeweed) on the germination rate and seedling growth of Cassia mimosoides var. nomame. We also studied the resulting changes in root-tip ultrastructure and peroxidase isozyme biochemistry. P. americana leaf extract inhibited seed germination, seedling growth, and biomass when compared to control and treated soil. Root and shoot growth in treated soil was stimulated relative to control soil, but root growth was inhibited by 50% in the leaf extract treatment. Biomass of C. mimosoides seedlings grown on leaf extract was reduced sevenfold when compared to the control seedlings. The amounts of total phenolic compounds in the leaf extract, treated soil, and control soil were 0.77, 0.14, and 0.03 mg l−1, respectively. The root tips of C. mimsoides treated with leaf extracts of P. americana showed amyloplasts and large central vacuoles with electron-dense deposits inside them when compared to control root tips. The activity of guaiacol peroxidase (GuPOX) in whole plant, roots, and shoots of C. mimosoides increased as leaf extract increased; maximum activity was observed in extract concentrations of 75% and higher. Root GuPOX activity was three times higher than in shoots. Therefore, we conclude that inhibition of C. mimosoides growth is related to the phenolic compounds in the P. americana leaf extract and the ultrastructure changes in root-tip cells and increased GuPOX activity is a response to these allelochemicals.  相似文献   

5.
The larvae of three races of Heliconius erato were fed various species of Passiflora containing varying levels of cyanoglucosides. The mortality rate of larvae and pupae rose when larvae were fed species of Passiflora capable of releasing larger quantities of cyanide. When larvae were fed species of Passiflora with these properties, the resulting adult butterflies also released higher levels of cyanide. This may serve as a defense mechanism. The compounds responsible for the release of cyanide were not evenly distributed throughout the adult butterfly’s body. The thorax contained the highest concentration of cyanogenic substances, followed by the head, wings, and abdomen. The younger tissues of Passiflora plants had higher levels of cyanide-releasing compounds than stems and mature leaves. Cyanogenic glycoside distribution within the plants is consistent with optimal allocation theory. The levels of cyanide-releasing substances in plants varied depending on the season.  相似文献   

6.
To examine how plant allelochemicals in prey affect foraging choices made by generalist predator paper wasps, Polistes dominulus (Vespidae), we compared predation on Pieris napi (Pieridae) caterpillars reared on host plants with different allelochemicals. In naturalistic behavioral choice experiments, free-flying wasps chose between living pierids reared on cabbage (Brassica oleracea), which lacks deterrent allelochemicals, or alternate host plants with potentially deterrent allelochemicals. The alternative host plants were: wormwood mustard, (Erysimum cheiranthoides: Brassicaceae), which contains cardenolides; nasturtium (Tropaeolum majus: Tropaeolaceae) with high concentrations of chlorogenic acid; and black mustard (Brassica nigra: Brassicaceae) with high concentrations of the aliphatic glucosinolate, sinigrin. Although wasps captured equal numbers of caterpillars reared on cabbage and each alternate host plant, they spent significantly longer handling prey from the alternate host plants as they selectively removed the caterpillar’s gut, which contained the plant material. This was true even if the caterpillar did not sequester toxins in its tissues, as revealed by high performance liquid chromatography (HPLC) analysis of Erysimum-reared pierids. Because handling time is longer, predators that capture pierids containing non-sequestered allelochemicals experience an overall reduction in foraging rate that may translate into a fitness cost.  相似文献   

7.
Elaphoside-A [p-vinylphenyl (beta-D: -glucopyranosyl)-(1-->3)-beta-D: -allopyranoside], a Mediterranean fruit fly oviposition deterrent, was previously isolated from an Argentine collection of the fern Elaphoglossum piloselloides. In order to establish the structural requirements for the observed oviposition inhibition, we synthesized and characterized 4 known and 21 new aromatic glycosides structurally related to elaphoside-A. Their effects on the oviposition behavior of Ceratitis capitata females are discussed.  相似文献   

8.
The sandalwood kernels of Santalum insulare (Santalaceae) collected in French Polynesia give seed oils containing significant amounts of ximenynic acid, E-11-octadecen-9-oic acid (64–86%). Fatty acid (FA) identifications were performed by gas chromatography/mass spectrometry (GC/MS) of FA methyl esters. Among the other main eight identified fatty acids, oleic acid was found at a 7–28% level. The content in stearolic acid, octadec-9-ynoic acid, was low (0.7–3.0%). An inverse relationship was demonstrated between ximenynic acid and oleic acid using 20 seed oils. Results obtained have been compared to other previously published data on species belonging to the Santalum genus, using multivariate statistical analysis. The relative FA S. insulare composition, rich in ximenynic acid is in the same order of those given for S. album or S. obtusifolium. The other compared species (S. acuminatum, S. lanceolatum, S. spicatum and S. murrayanum) are richer in oleic acid (40–59%) with some little differences in linolenic content.  相似文献   

9.
Derivatives of 2,2-dimethyl-3-(2-methylprop-1-enyl)cyclopropanecarboxylic acid (chrysanthemic acid) are classic natural pyrethroids discovered in pyrethrum plants and show insecticidal activity. Chrysanthemic acid, with two asymmetric carbons, has four possible stereoisomers, and most natural pyrethroids have the (1R,3R)-trans configuration. Interestingly, chrysanthemic acid–related structures are also found in insect sex pheromones; carboxylic esters of (1R,3R)-trans-(2,2-dimethyl-3-(2-methylprop-1-enyl)cyclopropyl)methanol (chrysanthemyl alcohol) have been reported from two mealybug species. In the present study, another ester of chrysanthemyl alcohol was discovered from the striped mealybug, Ferrisia virgata (Cockerell), as its pheromone. By means of gas chromatography–mass spectrometry, nuclear magnetic resonance spectrometry, and high-performance liquid chromatography analyses using a chiral stationary phase column and authentic standards, the pheromone was identified as (1S,3R)-(?)-cis-chrysanthemyl tiglate. The (1S,3R)-enantiomer strongly attracted adult males in a greenhouse trapping bioassay, whereas the other enantiomers showed only weak activity. The cis configuration of the chrysanthemic acid–related structure appears to be relatively scarce in nature, and this is the first example reported from arthropods.  相似文献   

10.
In batch chromatography, solvent-gradient operations (SG) produce significant improvement in terms of the enrichment of products and the separation time and the solvent consumption as compared with isocratic operations. This work studied solvent-gradient operation in reversed-phase simulated moving bed unit to separate ortho-xylene and para-xylene. In a solvent-gradient mode, different mobile phase compositions lead to a different retention behavior of solutes, i.e., different adsorption isotherms. Frontal analysis experiments for ortho-xylene and para-xylene were carried out with a reversed-phase column to measure adsorption parameters at several different mobile phase compositions, such as 45%, 50%, 60%, 75% and 90% acetonitrile. Therefore, the parameters in the retention model for solvent-gradient operation in the case of reversed-phase chromatography were estimated and applied to the design of an SMB system. A modified design method for solvent-gradient simulated moving bed chromatography (SG-SMB) was proposed. The robust operating conditions were obtained within the separation region on (φ R , φ E ) plane (φ R and φ E are the volumetric content of organic modifier in the raffinate and the extract streams, respectively). The performance results of isocratic and solvent-gradient SMB were compared. A partial-discard strategy and increasing of the solvent gradient level were also applied to improve the performance of the SG-SMB.  相似文献   

11.
12.
Robinia pseudo-acacia L. (black locust) is a nonindigenous species currently invading the central part of Japanese grasslands. Several allelochemicals were identified and characterized from the leaf tissue. The growth of both radicle and hypocotyl in the tested species (barnyard grass, white clover, lettuce, and Chinese cabbage) was reduced when grown in soil mixed with the leaves of R. pseudo-acacia at various concentrations. Aqueous leaf extracts, when bioassayed, exhibited a significant suppression of radicle growth. Chromatographic separation of an ethanolic extract of R. pseudo-acacia leaves resulted in isolation of three compounds, identified as robinetin (1), myricetin (2), and quercetin (3) by nuclear magnetic resonance and mass spectroscopy. All inhibited root and shoot growth of lettuce. Robinetin, found in a large amount, caused 50% suppression of the root and shoot growth of lettuce at 100 ppm. The presence of these bioactive substances in leaf tissue suggests a potential role for flavonoids in R. pseudo-acacia invasion in introduced habitats.  相似文献   

13.
In this study, we synthesized the new kinds of semiconducting polymeric gels having negative (n-type) and positive (p-type) counter ions as charge carriers. The polyacrylamide gel was doped with pyranine (8-hydroxypyrene-1,3,6-trisulfonic acid, trisodium salt), having \textSO3 - {\text{SO}}_{3}^{ - } ions as side groups and Na+ as counter ions, so-called p-type semiconducting gel. The doping process was performed during the polymerization where the pyranine binds to the polymer strands over OH group chemically via radical addition. In a similar way, N-isopropylacrylamide (NIPA) gel was doped with methacrylamidopropyltrimethyl ammonium chloride (MAPTAC), having Cl as counter ions, so-called n-type semiconducting gel. Here MAPTAC was embedded by copolymerization within the polymer network (NIPA). These semiconducting gels can show different electrical properties by changing the concentration of the doping agents, swelling ratio etc. We have shown that the pn junction, formed by combining p-type and n-type gels together in close contact, rectifies the current similar to the conventional Si and Ge diodes.  相似文献   

14.
Few studies report the individual effect of 9c,11t- and 10t,12c-CLA on human energy metabolism. We compared the postprandial oxidative metabolism of 9c,11t- and 10t,12c-CLA and oleic acid (9c-18:1) in 22 healthy moderately overweight volunteers. After 24 weeks supplementation with 9c,11t-, 10t,12c-CLA or 9c-18:1 (3 g/day), subjects consumed a single oral bolus of the appropriate [1-13C]-labeled fatty acid. 8 h post-dose, cumulative oxidation was similar for 9c-18:1 and 10t,12c (P = 0.66), but significantly higher for 9c,11t (P < 0.01).  相似文献   

15.
The hydrocarbons (3Z,6Z,9Z)-3,6,9-octadecatriene (3Z,6Z,9Z-18:H) and (3Z,6Z,9Z)-3,6,9-nonadecatriene (3Z,6Z,9Z-19:H) constitute the pheromone of the winter moth, Erannis bajaria. These compounds belong to a large group of lepidopteran pheromones which consist of unsaturated hydrocarbons and their corresponding oxygenated derivatives. The biosynthesis of such hydrocarbons with an odd number of carbons in the chain is well understood. In contrast, knowledge about the biosynthesis of even numbered derivatives is lacking. We investigated the biosynthesis of 3Z,6Z,9Z-18:H by applying deuterium-labeled precursors to females of E. bajaria followed by gas chromatography–mass spectrometry analysis of extracts of the pheromone gland. A mixture of deuterium-labeled [17,17,18,18-2H4]-3Z,6Z,9Z-18:H and the unlabeled 3Z,6Z,9Z-18:H was obtained after topical application and injection of (10Z,13Z,16Z)-[2,2,3,3-2H4]-10,13,16-nonadecatrienoic acid ([2,2,3,3-2H4]-10Z,13Z,16Z-19:acid) or (11Z,14Z,17Z)-[3,3,4,4-2H4]-11,14,17-icosatrienoic acid ([3,3,4,4-2H4]-11Z,14Z,17Z-20:acid). These results are consistent with a biosynthetic pathway that starts with α-linolenic acid (9Z,12Z,15Z-18:acid). Chain elongation leads to 11Z,14Z,17Z-20:acid, which is shortened by α-oxidation as the key step to yield 10Z,13Z,16Z-19:acid. This acid can be finally reduced to an aldehyde and decarbonylated or decarboxylated to furnish the pheromone component 3Z,6Z,9Z-18:H. A similar transformation of 11Z,14Z,17Z-20:acid yields the second pheromone component, 3Z,6Z,9Z-19:H.  相似文献   

16.
The autoxidation processes of the cis-9,trans-11 (c9,t11) and trans-10,cis-12 (t10,c12) isomers of CLA were separately observed at ca. 0% RH and different temperatures. The t10,c12 CLA oxidized faster than the c9,t11 isomer at all tested temperatures. The first half of the oxidation process of t10,c12 CLA obeyed an autocatalytic-type rate expression, but the latter half followed first-order kinetics. On the other hand, the entire oxidation process of c9,t11 CLA could be expressed by the autocatalytic-type rate expression. The apparent activation energies and frequency factors for the autoxidation of the isomers were estimated from the rate constants obtained at various temperatures based on the Arrhenius equation. The apparent activation energies for the CLA isomers were greater than those for the nonconjugated n−6 and n−3 PUFA or their esters. However, the enthalpyentropy compensation held during the autoxidation of both the CLA and PUFA. This suggested that the autoxidation mechanisms for the CLA and PUFA were essentially the same.  相似文献   

17.
We report the comparative inducing effects of a phytopathogen and a herbivorous arthropod on the performance of an herbivore. Tomato, Lycopersicon esculentum Mill., was used as the test plant, and tomato mosaic virus (ToMV) and corn earworm, Helicoverpa armigera Hübner, were used as the phytopathogen and herbivore, respectively. There were decreases in the efficiency of conversion of ingested food and efficiency of conversion of digested food when H. armigera was reared on tomato plants that had been previously inoculated with ToMV. However, virus inoculation did not affect feeding or oviposition preferences by H. armigera. In contrast, approximate digestibility, total consumption, relative growth rate, and relative consumption rate were lower for fourth-instar H. armigera that fed on plants previously damaged by the same herbivore. Feeding and oviposition were both deterred for H. armigera that fed on previously damaged plants. The duration of development of H. armigera was also prolonged under this treatment. Infection by ToMV and feeding damage by H. armigera increased the host plant’s peroxidase and polyphenol oxidase activity, respectively, suggesting that the performance of H. armigera may be affected by the induced phytochemistry of the host plant. Overall, this study indicated that, in general, insect damage has a stronger effect than ToMV infection on plant chemistry and, subsequently, on the performance of H. armigera.  相似文献   

18.
The effect of heartwood extracts from Acacia mangium (heartrot-susceptible) and A. auriculiformis (heartrot-resistant) was examined on the growth of wood rotting fungi with in vitro assays. A. auriculiformis heartwood extracts had higher antifungal activity than A. mangium. The compounds 3,4,7,8-tetrahydroxyflavanone and teracacidin (the most abundant flavonoids in both species) showed antifungal activity. A. auriculiformis contained higher levels of these flavonoids (3.5- and 43-fold higher, respectively) than A. mangium. This suggests that higher levels of these compounds may contribute to heartrot resistance. Furthermore, both flavonoids had strong 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity and laccase inhibition. This suggests that the antifungal mechanism of these compounds may involve inhibition of fungal growth by quenching of free radicals produced by the extracellular fungal enzyme laccase.  相似文献   

19.
Ethanolic extract of aerial parts of Artemisia annua L. and artemisinin were evaluated as anti-insect products. In a feeding deterrence assay on Epilachna paenulata Germ (Coleoptera: Coccinellidae) larvae, complete feeding rejection was observed at an extract concentration of 1.5 mg/cm2 on pumpkin leaf tissue. The same concentration produced a feeding inhibition of 87% in Spodoptera eridania (Cramer) (Lepidoptera: Noctuidae). In a no-choice assay, both species ate less and gained less weight when fed on leaves treated with the extract. Complete mortality in E. paenulata and 50% mortality in S. eridania were observed with extract at 1.5 mg/cm2. Artemisinin exhibited a moderate antifeedant effect on E. paenulata and S. eridania at 0.03–0.375 mg/cm2. However, a strong effect on survival and body weight was observed when E. paenulata larvae were forced to feed on leaves treated at 0.03 and 0.075 mg/cm2. Artemisia annua ethanolic extract of aerial parts at 1.5 mg/cm2 showed no phytotoxic effect on pumpkin seedlings.  相似文献   

20.
Goldenseal (Hydrastis canadensis L.) is a popular medicinal plant distributed widely in North America. The rhizome, rootlets, and root hairs produce medicinally active alkaloids. Berberine, one of the Hydrastis alkaloids, has shown antifungal activity. The influence of a combination of the major Hydrastis alkaloids on the plant rhizosphere fungal ecology has not been investigated. A bioassay was developed to study the effect of goldenseal isoquinoline alkaloids on three Fusarium isolates, including the two species isolated from Hydrastis rhizosphere. The findings suggest that the Hydrastis root extract influences macroconidia germination, but that only the combined alkaloids—berberine, canadine, and hydrastine—appear to synergistically stimulate production of the mycotoxin zearalenone in the Fusarium oxysporum isolate. The Hydrastis root rhizosphere effect provided a selective advantage to the Fusarium isolates closely associated with the root tissue in comparison with the Fusarium isolate that had never been exposed to Hydrastis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号