共查询到20条相似文献,搜索用时 15 毫秒
1.
Mn doped ZnO (ZnO:Mn) thin films with ~ 10 at.% of Mn were grown on quartz substrates by filtered cathodic vacuum arc (FCVA) technique at low substrate temperature (≤ 200 °C). The influence of substrate temperature and oxygen flow rate on the optical, electrical and magnetic properties of the ZnO:Mn thin films was studied. Both room temperature ferromagnetism and ultraviolet photoluminescence were observed in all films. A maximum saturation moment of 2.9 × 10−24 A m2/Mn can be achieved for the films grown in an optimum condition. This suggests that the fabrication of high-quality ZnO:Mn films by FCVA technique has the potential to realize efficient magneto-optic devices operating at ultraviolet regime. 相似文献
2.
《Vacuum》2013
Zinc Oxide (ZnO) thin films were prepared by cathodic vacuum arc deposition (CVAD) and filtered cathodic vacuum arc deposition (FCVAD) technology with a mixture of O2, Ar and N2. XRD patterns indicated that ZnO thin films prepared by CVAD had a combined orientation of ZnO (002) and ZnO (101). The preferential orientation ZnO (002) could be obtained at an optimum deposition pressure. On the other hand, a perfectly oriented ZnO (002) thin film prepared by FCVAD was obtained in lower pressure, which was beneficial to enhance the crystallization. The wetting behavior showed that all the ZnO thin films prepared by FCVAD were hydrophobic with low surface energy, but the reference samples of the polyurethane (PU) and glass are hydrophilic. Platelet adhesion test indicated that fewer platelets adhered and aggregated on the ZnO thin films prepared by FCVAD. The mechanism of hemocompatibility of ZnO thin films has also been investigated. It is suggested that hydrophobic surface with lower polar component and adhesive work are the two factors responsible for the excellent hemocompatibility. 相似文献
3.
沉积气压对电弧离子镀制备ZnO薄膜的结构和性能影响 总被引:1,自引:0,他引:1
采用阴极真空电弧离子镀技术在玻璃衬底上制备出了具有择优取向的透明ZnO薄膜. 利用X射线衍射仪、扫描电子显微镜及紫外-可见吸收光谱仪分别对ZnO薄膜的结构、表面形貌及可见光透过率进行了分析.XRD结果表明,所制备的ZnO薄膜具有六角纤锌矿结构的(002)和(101)两种取向,在沉积气压>1.0Pa时所制备的ZnO薄膜具有(002)择优取向,并且非常稳定.SEM图表明,ZnO晶粒大小较为均匀,晶粒尺寸随着气压升高而变小.在400~1000nm范围内,ZnO薄膜的可见光透过率超过80%,吸收边在370nm附近,所对应的光学带隙约为3.33~3.40eV,并随着沉积气压上升而变大. 相似文献
4.
Deposition and modification of titanium dioxide thin films by filtered arc deposition 总被引:4,自引:0,他引:4
Thin films of titanium dioxide have been deposited on glass substrates and conducting (100) silicon wafers by filtered arc deposition (FAD). The influence of the depositing Ti− energy, substrate types and substrate temperature on the structure, density, mechanical and optical properties have been investigated. The results of X-ray diffraction (XRD) showed that with increasing substrate bias, the film structure on silicon substrates changes from anatase to amorphous and then to rutile phase without auxiliary heating, the transition to rutile occurring at a depositing particle energy of about 100 eV. However, in the case of the glass substrate, no changes in the structure and optical properties were observed with increasing substrate bias. The optical properties over the range of 300–800 nm were measured using spectroscopic elliosometery, and found to be strongly dependent on the substrate bias, film density and substrate type. The refractive index values of the amorphous, anatase and rutile films on Si were found to be 2.56, 2.62 and 2.72 at a wavelength of 550 nm, respectively. The hardness and elastic modulus of the films were found to be strongly dependent on the film density. Measurements of the mechanical properties and stress also confirmed the structural transitions. The hardness and elastic modulus range of TiO2 films were found to be between 10–18 and 140–225 GPa, respectively. The compressive stress was found to vary from 0.7 to 2.6 GPa over the substrate bias range studied. The composition of the film was measured to be stoichiometric and no change was observed with increasing substrate bias. The density of the film varied with change in the substrate bias, and the density ranged between 3.62 and 4.09 g/cm3. 相似文献
5.
Diluted magnetic semiconductor epitaxial thin films of Zn1 − xMnxO have been grown on c-sapphire by the MOCVD technique. Variations of a and c lattice parameters follow Vegard's law and attest to the incorporation of substitutional Mn2+ ions. Carrier concentration (n-type) and electron mobility were studied versus temperature for different concentrations of manganese. Incorporation of manganese leads to the opening of the band gap, observed as a blue shift in energy regarding pure ZnO. 相似文献
6.
M.G. TsoutsouvaC.N. Panagopoulos D. PapadimitriouI. Fasaki M. Kompitsas 《Materials Science and Engineering: B》2011,176(6):480-483
Zinc oxide (ZnO) thin films were deposited on soda lime glass substrates by pulsed laser deposition (PLD) in an oxygen-reactive atmosphere. The structural, optical, and electrical properties of the as-prepared thin films were studied in dependence of substrate temperature and oxygen pressure. High quality polycrystalline ZnO films with hexagonal wurtzite structure were deposited at substrate temperatures of 100 and 300 °C. The RMS roughness of the deposited oxide films was found to be in the range 2-9 nm and was only slightly dependent on substrate temperature and oxygen pressure. Electrical measurements indicated a decrease of film resistivity with the increase of substrate temperature and the decrease of oxygen pressure. The ZnO films exhibited high transmittance of 90% and their energy band gap and thickness were in the range 3.26-3.30 eV and 256-627 nm, respectively. 相似文献
7.
J.-R. Duclre C. Mc Loughlin J. Fryar R. O'Haire M. Guilloux-Viry A. Meaney A. Perrin E. McGlynn M.O. Henry J.-P. Mosnier 《Thin solid films》2006,500(1-2):78-83
C-axis oriented ZnO layers were grown by pulsed-laser deposition on the surface of a platinum (111) epitaxial thin film supported by a c-sapphire substrate. The Pt bottom layer provides good in-plane lattice matching with c-ZnO, enabling epitaxial re-growth of the latter, as shown by X-ray diffraction data. Room- and low-temperature reflectance and photoluminescence measurements have been performed on such ZnO/Pt heterostructures for the first time. Intense resonances, corresponding to the A and B free excitons, are clearly evidenced in the reflectance measurements at 30 K, while the deconvolved full widths at half maximum of the bound excitonic lines, observed in the photoluminescence spectra at 28 K, range between 3 and 7 meV. This report clearly demonstrates that ZnO epitaxial thin films with very good structural and optical properties can be grown on a Pt bottom electrode and, thus, establishes the potential of this material system for use in ZnO-based optoelectronic devices. 相似文献
8.
Phase separated AlSi films composed of Al cylinders embedded in an amorphous Si matrix were prepared on conducting Si substrates by filtered cathodic arc deposition. The compositional dependence of AlSi films on a negative substrate bias showed a different trend depending on the cathode composition because of the self-sputtering process during the deposition. The porous structure was obtained from the phase separated AlSi film after removal of Al cylinders by wet etching in an ammonia solution. Scanning electron microscope images of the etched AlSi films showed that the average diameter of pores was increased from 3 nm to 7 nm by applying a negative substrate bias voltage during the deposition. The honeycomb ordered arrangement of pores was observed at 0 V and − 25 V substrate bias. The substrate temperature during the depositions had almost the same effect on the film morphologies as the negative substrate bias. 相似文献
9.
High quality ZnO:Al transparent conducting oxide films synthesized by pulsed filtered cathodic arc deposition 总被引:1,自引:0,他引:1
André Anders Sunnie H.N. Lim Kin Man Yu Johanna Rosén Mike McFarland 《Thin solid films》2010,518(12):3313-3319
Aluminum-doped zinc oxide, ZnO:Al or AZO, is a well-known n-type transparent conducting oxide with great potential in a number of applications currently dominated by indium tin oxide. In this study, the optical and electrical properties of AZO thin films deposited on glass and silicon by pulsed filtered cathodic arc deposition are systematically studied. In contrast to magnetron sputtering, this technique does not produce energetic negative ions, and therefore ion damage can be minimized. The quality of the AZO films strongly depends on growth temperature while only marginal improvements are obtained with post-deposition annealing. The best films, grown at a temperature of about 200 °C, have resistivities in the low to mid 10− 4 Ω cm range with a transmittance better than 85% in the visible part of the spectrum. It is remarkable that relatively good films of small thickness (60 nm) can be fabricated using this method. 相似文献
10.
Thin films of zirconium dioxide have been deposited onto glass and silicon substrates using filtered cathodic vacuum arc deposition under a pulsed negative DC bias. The properties of the films have been investigated using X-ray diffraction, X-ray photoelectron spectroscopy, microhardness testing and optical analysis. It was found that the crystalline phase of the films was strongly influenced by the applied bias and that an amorphous-monoclinic transition occurred on glass substrates for bias values > 250 V. The changes in crystallinity also resulted in an increase in the optical refractive index from 2.09 to 2.22 at 550 nm. A similar behaviour in the variation of the microhardness with applied pulsed DC bias was also observed, where the hardness increased from 11 GPa to 16. 5 GPa. 相似文献
11.
Thin n-type ZnO films doped with different atomic concentrations of aluminium were grown by filtered vacuum arc deposition (FVAD) on glass substrates. The films were deposited using an oxygen working pressure of 2.0 mTorr with an arc current running at two 100 ms pulses s−1. Structural, optical and electrical properties were investigated to understand the effect of Al doping on ZnO films. The best values were found for an ideal aluminium percentage between 4 and 6 at.%. 相似文献
12.
V.N. Zhitomirsky E. Çetinörgü E. Adler Yu. Rosenberg S. Goldsmith 《Thin solid films》2006,515(3):885-890
Transparent conducting ZnO:Al and ZnO films of 380-800 nm thickness were deposited on glass substrates by filtered vacuum arc deposition (FVAD), using a cylindrical Zn cathode doped with 5-6 at.% Al or a pure Zn cathode in oxygen background gas with pressure P = 0.4-0.93 Pa. The crystalline structure, composition and electrical and optical properties of the films were studied as functions of P. The films were stored under ambient air conditions and the variation of their resistance as function of storage time was monitored over a period of several months.The Al concentration in the film was found to be 0.006-0.008 at.%, i.e., a few orders of magnitude lower than that in the cathode material. However, this low Al content influenced the film resistivity, ρ, and its stability. The resistivity of as-deposited ZnO:Al films, ρ = (6-8) × 10− 3 Ω cm, was independent of P and lower by a factor of 2 in comparison to that of the ZnO films deposited by the same FVAD system. The ρ of ZnO films 60 days after deposition increased by a factor of ∼ 7 with respect to as-deposited films. The ZnO:Al films deposited with P = 0.47-0.6 Pa were more stable, their ρ first slowly increased during the storage time (1.1-1.4 times with respect to as-deposited films), and then stabilized after 30-45 days. 相似文献
13.
Structural and optical properties of CdS thin films grown by chemical bath deposition 总被引:2,自引:0,他引:2
Cubic cadmium sulphide (CdS) thin films with (111) preferential orientation were prepared by chemical bath deposition (CBD) technique, using the reaction between NH4OH, CdSO4 and CS(NH2)2. The films properties have been investigated as a function of bath temperature and deposition time. Structural properties of the obtained films were studied by X-ray diffraction analysis. The structural parameters such as crystallite size have been evaluated. The transmission spectra, recorded in the UV visible range reveal a relatively high transmission coefficient (70%) in the obtained films. The transmittance data analysis indicates that the optical band gap is closely related to the deposition conditions, a direct band gap ranging from 2.0 eV to 2.34 eV was deduced. The electrical characterization shows that CdS films' dark conductivities can be controlled either by the deposition time or the bath temperature. 相似文献
14.
The effects of substrate temperature on the structure and properties of ZnO films prepared by pulsed laser deposition 总被引:1,自引:0,他引:1
ZnO thin films were prepared by pulsed laser deposition (PLD) on glass substrates with growth temperature from room temperature (RT) to 500 °C. The effects of substrate temperature on the structural and optical properties of ZnO films have been investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission spectra, and RT photoluminescence (PL) measurements. The results showed that crystalline and (0 0 2)-oriented ZnO films were obtained at all substrate temperatures. As the substrate temperature increased from RT to 500 °C, the ratio of grain size in height direction to that in the lateral direction gradually decreased. The same grain size in two directions was obtained at 200 °C, and the size was smallest in all samples, which may result in maximum Eg and E0 of the films. UV emission was observed only in the films grown at 200 °C, which is probably because the stoichiometry of ZnO films was improved at a suitable substrate temperature. It was suggested that the UV emission might be related to the stoichiometry in the ZnO film rather than the grain size of the thin film. 相似文献
15.
M.E. Sánchez-Vergara M. Rivera J.C. Alonso-Huitrón A. Rodriguez J.R. Álvarez-Bada 《Materials Chemistry and Physics》2013
In this work, the synthesis and characterization of molecular materials formed from K2[Cu(C2O4)2], 1,8-dihydroxyanthraquinone and its potassium salt are reported. These complexes have been used to prepare thin films by vacuum thermal evaporation. The synthesized materials were characterized by scanning electron microscopy (SEM), atomic force microscopy (AFM), fast atomic bombardment (FAB+) mass and ultraviolet–visible (UV–vis) spectroscopy. Electrical transport properties were studied by dc conductivity measurements. The electrical activation energies of the complexes, which were in the range of 0.36–0.65 eV, were calculated from their Arrhenius plots. Optical absorption studies in the 100–1100 nm wavelength range at room temperature showed thin films' optical band gaps in the 2.3–3.9 eV range for direct transitions. On the other hand, strong visible photoluminescence (PL) at room temperature was noticed from the thermally-evaporated thin solid films. The PL of all investigated samples were observed with the naked eye in a bright background. The PL and absorption spectra of the investigated compounds are strongly influenced by the molecular structure and nature of the organic ligand. 相似文献
16.
Optical and structural characteristics of ZnO thin films grown by rf magnetron sputtering 总被引:1,自引:0,他引:1
S. Mandal 《Materials Research Bulletin》2008,43(2):244-250
Nanostructured ZnO thin films on Pyrex glass substrates were deposited by rf magnetron sputtering at different substrate temperatures. Structural features and surface morphology were studied by X-ray diffraction and atomic force microscopy analyses. Films were found to be transparent in the visible range above 400 nm, having transparency above 90%. Sharp ultraviolet absorption edges around 370 nm were used to extract the optical band gap for samples of different particle sizes. Optical band gap energy for the films varied from 3.24 to 3.32 eV and the electronic transition was of the direct in nature. A correlation of the band gap of nanocrystalline ZnO films with particle size and strain was discussed. Photoluminescence emission in UV range, which is due to near band edge emission is more intense in comparison with the green band emission (due to defect state) was observed in all samples, indicating a good optical quality of the deposited films. 相似文献
17.
Co-Ga co-doped ZnO films were fabricated by pulsed laser deposition on quartz substrates. The obtained films exhibited a wurtzite structure with c-axes growth preference. Optical measurements showed the presence of the cobalt ions in a tetrahedral crystal field, which proved that the Co ion substitution in the ZnO lattice, acting as magnetic cation. Hall measurements indicated that the films were n-type conductive with the electron concentrations of ~ 1020/cm3. This value was much higher than that of the Co-doped films, suggesting the effective incorporation of Ga in the films. Room temperature ferromagnetism was observed for the Ga-Co co-doped thin films. 相似文献
18.
A series of ZnO thin films doped with various vanadium concentrations were prepared on glass substrates by direct current reactive magnetron sputtering. The results of the X-ray diffraction (XRD) show that the films with doping concentration less than 10 at.% have a wurtzite structure and grow mainly along the c-axis orientation. The residual stress, estimated by fitting the XRD diffraction peaks, increases with the doping concentration and the grain size also has been calculated from the XRD results, decreases with increasing the doping concentration. The surface morphology of the ZnO:V thin films was examined by SEM. The optical constants (refractive index and extinction coefficient) and the film thickness have been obtained by fitting the transmittance. The optical band gap changed from 3.12 eV to 3.60 eV as doping concentration increased from 1.8 at.% to 13 at.% mol. All the results have been discussed in relation with doping concentration. 相似文献
19.
Yuankun Zhu Rueben J. Mendelsberg Jiaqi Zhu Jiecai Han André Anders 《Journal of Materials Science》2013,48(10):3789-3797
Indium-doped cadmium oxide (CdO:In) films were prepared on glass and sapphire substrates by pulsed filtered cathodic arc deposition (PFCAD). The effects of substrate temperature, oxygen pressure, and an MgO template layer on film properties were systematically studied. The MgO template layers significantly influence the microstructure and the electrical properties of CdO:In films, but show different effects on glass and sapphire substrates. Under optimized conditions on glass substrates, CdO:In films with thickness of about 125 nm showed low resistivity of 5.9 × 10?5 Ωcm, mobility of 112 cm2/Vs, and transmittance over 80 % (including the glass substrate) from 500 to 1500 nm. The optical bandgap of the films was found to be in the range of 2.7 to 3.2 eV using both the Tauc relation and the derivative of transmittance. The observed widening of the optical bandgap with increasing carrier concentration can be described well only by considering bandgap renormalization effects along with the Burstein–Moss shift for a nonparabolic conduction band. 相似文献
20.
采用阴极真空电弧离子沉积技术在玻璃及Si衬底上成功地制备了具有择优结晶取向的透明MgO薄膜。利用X射线衍射仪(XRD)、扫描电子显微镜(SEM)及紫外-可见吸收光谱仪分别对MgO薄膜微观结构、表面形貌及可见光透过率进行了测试与分析。XRD结果表明,所制备的MgO薄膜具有NaCl型立方结构的(100)、(110)和(111)3种结晶取向,在沉积气压为0.7~3.0Pa的范围内,薄膜的择优结晶取向随沉积气压的升高先由(100)转变为(110),最后变为(111)。SEM图表明随着沉积气压的升高,MgO薄膜的晶粒逐渐变小,薄膜结晶质量变差。在380~900nm范围内,沉积气压为0.7Pa下制备的MgO薄膜其可见光透过率高于90%,随着沉积气压的升高,薄膜的可见光透过率有所下降。 相似文献