首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Zinc oxide (ZnO) thin films were deposited on soda lime glass substrates by pulsed laser deposition (PLD) in an oxygen-reactive atmosphere. The structural, optical, and electrical properties of the as-prepared thin films were studied in dependence of substrate temperature and oxygen pressure. High quality polycrystalline ZnO films with hexagonal wurtzite structure were deposited at substrate temperatures of 100 and 300 °C. The RMS roughness of the deposited oxide films was found to be in the range 2-9 nm and was only slightly dependent on substrate temperature and oxygen pressure. Electrical measurements indicated a decrease of film resistivity with the increase of substrate temperature and the decrease of oxygen pressure. The ZnO films exhibited high transmittance of 90% and their energy band gap and thickness were in the range 3.26-3.30 eV and 256-627 nm, respectively.  相似文献   

2.
ZnO thin films of different thicknesses were deposited by pulsed direct-current magnetron sputtering onto poly(ethylene terephthalate) (PET) substrates and afterwards poly 3, 4-ethylenedioxythiophene:polystyrenesulfonate (PEDOT:PSS) was spin-coated onto the ZnO film. Spectroscopic ellipsometry in the Vis–fUV energy range (1.5–6.5 eV), X-ray diffraction and atomic force microscopy were used to reveal the properties of the deposited films. The size of crystallites increased from 5.1 to 7.4 nm, whereas the crystallinity of the ZnO films has been improved. The influence of different ZnO thickness on the optical properties of the PEDOT:PSS layer was studied as well. As the thickness of ZnO films increased, the surface roughness increased but the energy gap decreased after a critical thickness. Concerning the consequences to the PEDOT:PSS optical properties, no major changes occurred in the transition energies.  相似文献   

3.
Great interest in nanoscale thin films (sub-100 nm) has been stimulated by the developing demands of functional devices. In this paper, nanoscale zinc oxide (ZnO) thin films were deposited on glass substrates at 300 °C by pulsed-spray evaporation chemical vapor deposition. Scanning electron micrographs indicate uniform surface morphologies composed of nanometer-sized spherical particles. The growth kinetics and growth mode are studied and the relationship between the film thickness and the electric properties with respect to the growth mode is interpreted. X-ray diffraction shows that all ZnO films grown by this process were crystallized in a hexagonal structure and highly oriented with their c-axes perpendicular to the plane of the substrate. Optical measurements show transparencies above 85% in the visible spectral range for all films. The absorbance in the UV spectral range respects well the Beer-Lambert law, enabling an accurate optical thickness measurement, and the absorption coefficient was measured for a selected wavelength. The measured band gap energies exhibit an almost constant value of 3.41 eV for all films with different thicknesses, which attributed to the thickness-independent crystallite size.  相似文献   

4.
Nanostructured ZnO thin films on Pyrex glass substrates were deposited by rf magnetron sputtering at different substrate temperatures. Structural features and surface morphology were studied by X-ray diffraction and atomic force microscopy analyses. Films were found to be transparent in the visible range above 400 nm, having transparency above 90%. Sharp ultraviolet absorption edges around 370 nm were used to extract the optical band gap for samples of different particle sizes. Optical band gap energy for the films varied from 3.24 to 3.32 eV and the electronic transition was of the direct in nature. A correlation of the band gap of nanocrystalline ZnO films with particle size and strain was discussed. Photoluminescence emission in UV range, which is due to near band edge emission is more intense in comparison with the green band emission (due to defect state) was observed in all samples, indicating a good optical quality of the deposited films.  相似文献   

5.
Aluminum-doped zinc oxide (ZnO:Al) thin films (t = 68–138 nm) were prepared by thermal oxidation in air flow, at 720 K, of the multilayered metallic Zn/Al thin stacks deposited in vacuum onto glass substrates by physical vapor deposition. The effect of Al content (3.7–8.2 at.%) on the structural (crystallinity, texture, stress, surface morphology) and optical (transmittance, absorbance, energy band gap) characteristics of doped ZnO thin films was investigated. The X-ray diffraction spectra revealed that the Al-doped ZnO films have a hexagonal (wurtzite) structure with preferential orientation with c-axis perpendicular to the substrate surface. A tensile residual stress increasing with Al content was observed. The films showed a high transmittance (about 90%) in the visible and NIR regions. The optical band gap value was found to decrease with Al content from 3.22 eV to 3.18 eV. The results are discussed in correlation with structural characteristics and Al content in the films.  相似文献   

6.
Highly conducting and transparent thin films of tungsten-doped ZnO (ZnO:W) were prepared on glass substrates by direct current (DC) magnetron sputtering at low temperature. The effect of film thickness on the structural, electrical and optical properties of ZnO:W films was investigated. All the deposited films are polycrystalline with a hexagonal structure and have a preferred orientation along the c-axis perpendicular to the substrate. The electrical resistivity first decreases with film thickness, and then increases with further increase in film thickness. The lowest resistivity achieved was 6.97 × 10−4 Ω cm for a thickness of 332 nm with a Hall mobility of 6.7 cm2 V−1 s−1 and a carrier concentration of 1.35 × 1021 cm−3. However, the average transmittance of the films does not change much with an increase in film thickness, and all the deposited films show a high transmittance of approximately 90% in the visible range.  相似文献   

7.
K. Ahn  H.U. Lee  H.S. Ahn  S.G. Yoon 《Thin solid films》2010,518(14):4066-6919
Hydrogenated Al-doped ZnO (H:AZO) thin films were deposited on glass substrates at room temperature by radio-frequency magnetron sputtering at various hydrogen flow rates. The addition of hydrogen improved the resistivity of the H:AZO films significantly. A thin insulating layer was produced on H:AZO films by atmospheric pressure plasma with Ar/O2 reactive gas. The resistivity degenerated and the optical band gap of the oxygen plasma-treated H:AZO films decreased from 3.7 eV to 3.4 eV. This was attributed to a decrease in the hydrogen concentration at the film surface according to elemental depth analysis.  相似文献   

8.
Ga-doped zinc oxide (ZnO:Ga) transparent conductive films were deposited on glass substrates by DC reactive magnetron sputtering. The influence of substrate temperature on the structural, electrical, and optical properties of ZnO:Ga films was investigated. The X-ray diffraction (XRD) studies show that higher temperature helps to promote Ga substitution more easily. The film deposited at 350 °C has the optimal crystal quality. The morphology of the films is strongly related to the substrate temperature. The film deposited is dense and flat with a columnar structure in the cross-section morphology. The transmittance of the ZnO:Ga thin films is over 90%. The lowest resistivity of the ZnO:Ga film is 4.48×10−4 Ω cm, for a film which was deposited at the substrate temperature of 300 °C.  相似文献   

9.
N.Z. El-Sayed 《Vacuum》2006,80(8):860-863
Thin films of bismuth with different thicknesses were produced by thermal evaporation from a molybdenum boat source onto cleaned glass substrates at room temperature. The material has been characterized using X-ray diffraction, electrical and optical measurements. A polycrystalline transition phase was observed. The resistivity was calculated for different film thicknesses and found to vary with thickness and temperature. An anomalous dependence of resistivity on temperature was observed during heating. The optical constants were determined from the transmission and reflection data of these thin films for normal incidence. The absorption coefficient revealed the existence of an allowed direct transition with energy gap (Eg) values ranging from 3.45 to 3.6 eV.  相似文献   

10.
A home-made radio frequency magnetron sputtering is used to systematically study the structural, electrical, and optical properties of aluminum doped zinc oxide (ZnO:Al) thin films. The intensity of the (002) peak exhibits a remarkable enhancement with increasing film thickness. Upon optimization, we achieved low resistivity of 4.2 × 10− 4 Ω cm and high transmittance of ~ 88% for ZnO:Al films. Based on the present experimental data, the carrier transport mechanism is discussed. It is found that the grain boundary scattering needs to be considered because the mean free path of free carrier is comparable to the grain size. The 80 nm-ZnO:Al thin films are then deposited onto low-frequency inductively coupled plasma fabricated silicon solar cells to assess the effect of ZnO:Al thin films on the performance of the solar cells. Optimized ZnO:Al thin films are identified as transparent and conductive oxide thin film layers.  相似文献   

11.
In the present study zinc oxide doped Nickel thin films (ZnO:Ni) were deposited on glass substrates using a chemical spray ultrasonic technique. The effect of Ni concentration on the structural, electrical, optical, and non-linear optical (NLO) properties of the ZnO:Ni thin films was investigated. The films were analyzed using X-ray diffraction (XRD), profilometry and optical transmittance. A polycrystalline structure with a preferential growth along the ZnO (002) plane was found, the optical transmittance was found to be higher than 80% and the band gap (Eg) varied from 3.19 to 3.27 eV. The value of the electrical conductivity was found. Moreover, the effective non-linear quadratic and cubic electronic susceptibilities of thin film samples were determined by the SHG and THG techniques, working at 1064 nm.  相似文献   

12.
Natively textured surface aluminum-doped zinc oxide (ZnO:Al) layers for thin film solar cells were directly deposited without any surface treatments via pulsed direct-current reactive magnetron sputtering on glass substrates. Such an in-situ texturing method for sputtered ZnO:Al thin films has the advantages of efficiently reducing production costs and dramatically saving time in photovoltaic industrial processing. High purity metallic Zn-Al (purity: 99.999%, Al 2.0 wt.%) target and oxygen (purity: 99.999%) were used as source materials. During the reactive sputtering process, the oxygen gas flow rate was controlled using plasma emission monitoring. The performance of the textured surface ZnO:Al transparent conductive oxides (TCOs) thin films can be modified by changing the number of deposition rounds (i.e. thin-film thicknesses). The initially milky ZnO:Al TCO thin films deposited at a substrate temperature of ~ 553 K exhibit rough crater-like surface morphology with high transparencies (T ~ 80-85% in visible range) and excellent electrical properties (ρ ~ 3.4 × 10− 4 Ω cm). Finally, the textured-surface ZnO:Al TCO thin films were preliminarily applied in pin-type silicon thin film solar cells.  相似文献   

13.
The coexistence of ultraviolet (UV) photoconductivity (PC) and room-temperature ferromagnetism (RTFM) is observed in polycrystalline ZnO thin films deposited by unbalanced magnetron sputtering under high oxygen pressure. A significant increase in PC (∼ 870% to 40 000%) is observed with increasing film thickness and the consequent structural disorder and film porosity. In contrast, the saturation magnetization (MS) at room temperature is found to decrease from 1.02 emu/g to 0.53 emu/g with increasing film thickness from 50 to 150 nm.  相似文献   

14.
Fluorine and aluminum-doped zinc oxide thin films, ZnO:F:Al, were prepared on soda-lime glass substrates by the sol-gel method and repeated dip-coating. The effect of the solution ageing and film thickness on the physical characteristics of the films was studied. Two ageing times, namely, two and seven days, and three different thicknesses, in the order of 220, 330, and 520 nm, were the main variables used in this work. As-deposited ZnO:F:Al films showed a high electrical resistivity, however after a vacuum thermal treatment, it was registered a significant decrease. Structural, optical, and morphological characterizations were carried out in vacuum-annealed films. The X-ray diffraction (XRD) patterns revealed that both as-deposited and vacuum-annealed ZnO:F:Al thin films were polycrystalline with a hexagonal wurtzite-type structure with a well-defined (002) diffraction peak, irrespective of the ageing time of the starting solution. The (002) peak shows a proportional increase with the thickness magnitude. An average crystallite size of about 20 nm was estimated using the well-known Scherrer's formula. From the surface morphological study it was observed that the grain size is almost independent of the ageing time of the starting solution, and the film thickness. Films presented an average optical transmittance in the visible range (400-700 nm) in the order of 90%, as well as a band gap of 3.3 eV. The gas-sensing properties of ZnO:F:Al thin films in an atmosphere containing different concentrations of carbon monoxide, and at different operation temperatures were probed. The highest sensitivity registered was of the order of 93%.  相似文献   

15.
Zinc oxide (ZnO) and indium doped ZnO (IZO) thin films with different indium compositions were grown by pulsed laser deposition technique on corning glass substrate. The effect of indium concentration on the structural, morphological, optical and electrical properties of the film was studied. The films were oriented along c-direction with wurtzite structure and highly transparent with an average transmittance of more than 80% in the visible wavelength region. The energy band gap was found to decrease with increasing indium concentration. High transparency makes the films useful as optical windows while the high band gap values support the idea that the film could be a good candidate for optoelectronic devices. The value of resistivity observed to decrease initially with doping concentration and subsequently increases. IZO with 1% of indium showed the lowest resistivity of 2.41 × 10−2 Ω cm and large transmittance in the visible wavelength region. Especially 1% IZO thin film was observed to be a suitable transparent conducting oxide material to potentially replace indium tin oxide.  相似文献   

16.
Y.C. Lin  B.L. Wang  C.T. Ha 《Thin solid films》2010,518(17):4928-4934
The purpose of this study is to use pulsed magnetron sputtering to deposit transparent conductive ZnO:Mo (MZO) film on a Corning 1737 glass substrate. Various process parameters, including power, work pressure, pulsed frequency, film thickness, and substrate temperature, were analyzed for their effects on the microstructure and optoelectronic characteristics of MZO thin film. Experimental results show that MZO film with a low resistivity of approximately 8.9 × 10− 4 Ω cm and a visible light transitivity of greater than 80% can be obtained using a Mo content of 1.77 wt.%, sputtering power of 100 W, work pressure of 0.4 Pa, pulsed frequency of 10 kHz, and film thickness of 500 nm without heating. The value of optical band gap of MZO increased upon increasing the crystallinity of the MZO thin film, and the range of the optical band gap of MZO thin film is from 3.30 to 3.35 eV.  相似文献   

17.
Transparent thin films of Ga-doped ZnO (GZO), with Ga dopant levels that varied from 0 to 7 at.%, were deposited onto alkali-free glass substrates by a sol-gel process. Each spin-coated film was preheated at 300 °C for 10 min, and then annealed at 500 °C for 1 h under air ambiance. The effects of Ga dopant concentrations on crystallinity levels, microstructures, optical properties, and electrical resistivities of these ZnO thin films were systematically investigated. Photoluminescence spectra of GZO thin films were examined at room temperature. XRD results revealed that the undoped ZnO thin films exhibited a preferred orientation along the (002) plane and that the ZnO thin films doped with Ga showed degraded crystallinity. Experimental results also showed that Ga doping of ZnO thin films could markedly decrease surface roughness, improve transparency in the visible range, and produce finer microstructures than those of undoped ZnO thin films. The most promising films for transparent thin film transistor (TTFT) application produced in this study, were the 3 and 5 at.% Ga-doped ZnO thin films, both of which exhibited an average transmittance of 90.6% and an RMS roughness value of about 2.0 nm.  相似文献   

18.
The electrical and optical properties of silver indium selenide thin films prepared by co-evaporation have been studied. X-ray diffraction indicates that the as prepared films were polycrystalline in nature. The lattice parameters were calculated to be a=0.6137 and b=1.1816 nm. Composition was determined from energy dispersive analysis of X-ray. Silver indium selenide thin films were also prepared by bulk evaporation of powdered sample for comparative study. They have an optical band gap (Eg) of 1.25 eV and it is a direct allowed transition. Refractive index (n) and extinction coefficient (k) were calculated from absorption and reflection spectra. Steady-state photoconductivity was measured from 300 to 400 K. Carrier lifetime was calculated from transient photoconductivity measurements at room temperature at different intensities of illumination.  相似文献   

19.
ZnO is a fundamental wide band gap semiconductor. Especially, doped elements change the optical properties of the ZnO thin film, drastically. Doped ZnO semiconductor is a promising materials for the transparent conductive oxide layer. Especially, Zr doped ZnO is a potential material for the high performance TCO. In this paper, ZnO semiconductors were doped with Zr element and microstructural, surface and optical properties of the Zr doped ZnO thin films were investigated. Zr doped ZnO thin films were deposited thermionic vacuum arc (TVA) technique. TVA is a rapid and high vacuum deposition method. A glass, polyethylene terephthalate and Si wafer (111) were used as a substrate material. Zr doped ZnO thin films deposited by TVA technique and their substrate effect investigated. As a results, deposited thin films has a high transparency. The crystal orientation of the films are in polycrystal formation. Especially, substrate crystal orientation strongly change the crystal formation of the films. Substrate crystal structure can change the optical band gap, microstructural properties and deposited layer formation. According to the atomic force microscopy and field emission scanning electron microscopy measurements, all deposited layer shows homogeneous, compact and low roughness. The band values of the deposited thin film were approximately found as to be 3.1–3.4 eV. According to the results, Zr elements created more optical defect and shifted to the band gap value towards to blue region.  相似文献   

20.
The optical properties of cupric telluride (CuTe) thin films have been studied in the wavelength range 310-800 nm using spectroscopic ellipsometry (SE). Thin films of thickness between 30 and 150 nm were prepared by thermal evaporation at the rate of 15.6 Å/s on well cleaned glass substrates kept at 300 K under the vacuum better than 2×10−5 mbar. It has been found that the optical band gap increases with the thickness of the films. The refractive index of the films increases with the energy but the extinction coefficient first increases and then decreases gradually with energy. The analysis of the absorption coefficient determined from the extinction coefficient reveals that there is allowed direct transition with a band gap of about 1.5 eV. The increase in the band gap with the increase in the film thickness has been ascribed to defect levels in the band gap formed by defects in the films.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号