首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Parabolic solar collector collects the radiant energy emitted from the sun and focuses it at a point. Parabolic trough collectors are the low cost implementation of concentrated solar power technology that focuses incident sun light on to a tube filled with a heat transfer fluid. However, the basic problem with the cylindrical parabolic collector without tracking was the solar collector does not move with the orientation of sun. Development of automatic tracking system for cylindrical parabolic collectors will increase solar collection as well as efficiency of devices. The main aim of this paper is to design, fabricate and analyze the performance of parabolic collector with automated tracking system. The automated tracking mechanism is used to receive the maximum possible energy of solar radiation as it tracks the path of sun. The performance of the parabolic trough collector is experimentally investigated with the water circulated as heat transfer fluid. The collector efficiency will be noted.  相似文献   

3.
This paper uses the F-chart technique to evaluate three types of solar heating systems, namely; space solar heating and domestic hot water system (SHDHW), domestic hot water system (DHW) and solar swimming pool heating system (SPHS), using three types of concrete solar collectors, models A, B, and C, and one conventional metallic solar collector.

The economical analysis of SHDHW system revealed that the concrete collectors provided about 49 and 63% of the annual load when the collecting area of the solar panel increased from 55 to 88 M2 (25 to 40% of the building roof area). The corresponding solar contributions when conventional metallic collectors were used are 41 and 53%, respectively. This represents an improvement of the annual solar fraction of about 19% when concrete collectors are used instead of the metallic collectors.

It was found that solar heating systems with concrete solar collector models gave higher solar fractions and total life cycle savings than the conventional solar metallic collector.  相似文献   


4.
The performance of two kinds of solar systems for space- and domestic hot water heating has been compared by computer simulations. One system is a conventional radiator-based heating system with collectors of ‘ideal’ collector coefficients. The second system is a low temperature heating system with solar collectors of moderate efficiency. The investigation shows that the difference in performance of the two systems is in the order of 1–6%.  相似文献   

5.
This paper proposes a parabolic dish/AMTEC solar thermal power system and evaluates its overall thermal–electric conversion performance. The system is a combined system in which a parabolic dish solar collector is cascaded with an alkali metal thermal to electric converter (AMTEC) through a coupling heat exchanger. A separate type heat-pipe receiver is selected to isothermally transfer the solar energy from the collector to the AMTEC. To assess the system’s overall thermal–electric conversion performance, a theoretical analysis has been undertaken in conjunction with a parametric investigation by varying relevant parameters, i.e., the average operating temperature and performance parameters associate with the dish collector and the AMTEC. Results show that the overall conversion efficiency of parabolic dish/AMTEC system could reach up to 20.6% with a power output of 18.54 kW corresponding to an operating temperature of 1280 K. Moreover, it is found that the optimal condenser temperature, corresponding to the maximum overall efficiency, is around 600 K. This study indicates that the parabolic dish/AMTEC solar power system exhibits a great potential and competitiveness over other solar dish/engine systems, and the proposed system is a viable solar thermal power system.  相似文献   

6.
E. Zambolin 《Solar Energy》2010,84(8):1382-1396
New comparative tests on two different types of solar collectors are presented in this paper. A standard glazed flat plate collector and an evacuated tube collector are installed in parallel and tested at the same working conditions; the evacuated collector is a direct flow through type with external compound parabolic concentrator (CPC) reflectors.Efficiency in steady-state and quasi-dynamic conditions is measured following the standard EN 12975-2 and it is compared with the input/output curves measured for the whole day.The first purpose of the present work is the comparison of results in steady-state and quasi-dynamic test methods both for flat plate and evacuated tube collectors. Beside this, the objective is to characterize and to compare the daily energy performance of these two types of collectors. An effective mean for describing and analyzing the daily performance is the so called input/output diagram, in which the collected solar energy is plotted against the daily incident solar radiation. Test runs have been performed in several conditions to reproduce different conventional uses (hot water, space heating, solar cooling).Results are also presented in terms of daily efficiency versus daily average reduced temperature difference: this allows to represent the comparative characteristics of the two collectors when operating under variable conditions, especially with wide range of incidence angles.  相似文献   

7.
The working principle and thermal performance of a new v-trough solar concentrator are presented in this paper. Compared with the common parabolic trough solar concentrators, the new concentrator has two parabolic troughs which form a V-shape with the focal line at the bottom of the troughs. This is beneficial for the installation and insulation of the receiver, and the shadow on the reflective surface is avoided. The new v-trough collector does not require high precision tracking devices and reflective material. And therefore the cost of the system could be significantly reduced. Various experimental tests were carried out both outdoor and indoor using different types of receiver tubes. The results show that the collector system can have thermal efficiency up to 38% at 100 °C operating temperature. System modelling was used to predict the rate of fresh water produced by four different solar collector systems which include both static and one-axis solar tracking technologies. Comparison of the solar collectors at different temperature ranges for humidification/dehumidification desalination process using specific air flow rate were considered. At each temperature range, suitable solar collectors were compared in the aspect of fresh water production and area of solar collector required. Results showed that the new v-trough solar collector is the most promising technology for small to medium scale solar powered water desalination.  相似文献   

8.
The use of a solar simulator for performance determination permits collector testing under standard conditions of wind, ambient temperature, flow rate and “Sun”. The performance results determined with the simulator have been found to be in good agreement with outdoor performance results.This paper reports the measured thermal efficiency and evaluation of 23 collectors which differ according to absorber material (copper, aluminum, steel), absorber coating (nonselective black paint, selective copper oxide, selective black nickel, selective black chrome), type of glazing material (glass, Tedlar, Lexan, anti-reflection glass), the use of honeycomb material and the use of vacuum to reduce thermal convection losses. The collectors are given performance rankings based on noon-hour solar conditions and all-day solar conditions. The determination with the simulator of an all-day collector performance is made possible by tests at different incident angles. The solar performance rankings are made based on whether the collector is to be used for pool heating, hot water, absorption air conditioning, heating, or for a solar Rankine machine.Another test which aids in selecting collectors is a collector heat capacity test. This test permits a ranking of collectors according to their heat capacity (and time constant), which is a measure of the rapidity of a collector's response to transient solar conditions. Results are presented for such tests.Final considerations for collector selection would of course be made on the basis of cost and the reliability of performance over the required life of a collector. Results of a cost-effectiveness study is given for conditions corresponding to those required for absorption or heating. These results indicate that the additional cost involved in the upgrading of collector performance (selective surfaces, anti-reflection glass, etc.) appears to be cost effective and therefore justified. Some data are also presented to illustrate a method for the determination of outdoor performance degradation by use of simulator tests carried out before and after a period of outdoor operation.  相似文献   

9.
Investigations elucidate how a glass cover with antireflection surfaces can improve the efficiency of a solar collector and the thermal performance of solar heating systems. The transmittances for two glass covers for a flat-plate solar collector were measured for different incidence angles. The two glasses are identical, except for the fact that one of them is equipped with antireflection surfaces by the company SunArc A/S. The transmittance was increased by 5–9%-points due to the antireflection surfaces. The increase depends on the incidence angle. The efficiency at incidence angles of 0° and the incidence angle modifier were measured for a flat-plate solar collector with the two cover plates. The collector efficiency was increased by 4–6%-points due to the antireflection surfaces, depending on the incidence angle. The thermal advantage with using a glass cover with antireflection surfaces was determined for different solar heating systems. Three systems were investigated: solar domestic hot water systems, solar heating systems for combined space heating demand and domestic hot water supply, and large solar heating plants. The yearly thermal performance of the systems was calculated by detailed simulation models with collectors with a normal glass cover and with a glass cover with antireflection surfaces. The calculations were carried out for different solar fractions and temperature levels of the solar heating systems. These parameters influence greatly the thermal performance associated with the antireflection surfaces.  相似文献   

10.
The gross solar energy falling on a typical house during the heating season is greater than the space heating requirement. Conventional solar collectors produce hot water, which is then used to meet the domestic hot water and space heating requirements of the house. Such collectors, however, are expensive, and it is only possible to use them to collect a small proportion of the available solar energy. This paper looks at an alternative approach of using the entire wall surface as a passive solar collector, by using an external layer of translucent insulation. Measurements and calculations are reported which show that a wall with a double-glazed outer layer would be expected to show a zero net heat loss over the heating season. This is not considered to be sufficient advantage to overcome the cost and other problems associated with the system.  相似文献   

11.
Evaluation of a solar thermal system using building louvre shading devices   总被引:1,自引:0,他引:1  
External louvres are increasingly used to provide solar protection for building glazed surfaces. The integration of collectors into the external louvres of buildings offers a means of reducing system cost as well as providing architects with more freedom to integrate the technology into their designs. This work concerns the modification of existing louvre designs to integrate a solar collector in the shading device. The evaluation of a thermal solar system for water heating is assessed in this paper. A numerical model for the integrated solar collector was developed for different configurations and the collector efficiency is quantified for each configuration. System thermal performance was obtained for the climatic conditions of Lisbon (Portugal) and Tenerife (Spain). Economic and environmental viability of the system is assessed.  相似文献   

12.
A solar cooling, heating and hot water supply system for the Hospital with evacuated glass tube type solar collectors was described. Analysis has been made of the evacuated glass tube collector and some results of the calculation were shown. The results of the performance of the solar collectors in the large scale system were shown for one year operation to confirm the results as expected at the time of designing.  相似文献   

13.
This study includes design and experimental analysis of a solar domestic water heating system. Water heating systems with glazed and unglazed collectors were constructed and tested at Dhaka, Bangladesh, at a latitude of 23.7 °N. Collector thermal efficiency and capability of raising water temperature were considered as performance evaluation measures. A typical day analysis showed that collector efficiency varied with time and touched its peak at around 12:00 h. During testing, the efficiency of the glazed collector increased by about 70.3% when compared with the unglazed collector. Average collector efficiency over the whole test period was also estimated to be 57.3% and 33.7% for glazed and unglazed collectors, respectively. Maximum water temperatures measured at daytime user outlets were, respectively, 82.4 °C and 65.5 °C for domestic water heating systems with glazed and unglazed collectors and approximated to be 49 °C and 32 °C higher than the ambient temperature. The glazed collector eventually offered significantly higher performances over the unglazed collector in improving system performance.  相似文献   

14.
Modelling of parabolic trough direct steam generation solar collectors   总被引:2,自引:0,他引:2  
Solar electric generation systems (SEGS) currently in operation are based on parabolic trough solar collectors using synthetic oil heat transfer fluid in the collector loop to transfer thermal energy to a Rankine cycle turbine via a heat exchanger. To improve performance and reduce costs direct steam generation in the collector has been proposed. In this paper the efficiency of parabolic trough collectors is determined for operation with synthetic oil (current SEGS plants) and water (future proposal) as the working fluids. The thermal performance of a trough collector using Syltherm 800 oil as the working fluid has been measured at Sandia National Laboratory and is used in this study to develop a model of the thermal losses from the collector. The model is based on absorber wall temperature rather than fluid bulk temperature so it can be used to predict the performance of the collector with any working fluid. The effects of absorber emissivity and internal working fluid convection effects are evaluated. An efficiency equation for trough collectors is developed and used in a simulation model to evaluate the performance of direct steam generation collectors for different radiation conditions and different absorber tube sizes. Phase change in the direct steam generation collector is accounted for by separate analysis of the liquid, boiling and dry steam zones.  相似文献   

15.
A. Valan Arasu  T. Sornakumar   《Solar Energy》2007,81(10):1273-1279
The design and manufacture of a smooth 90° rim angle fiberglass reinforced parabolic trough for parabolic trough solar collector hot water generation system by hand lay up method is described in this paper. The total thickness of the parabolic trough is 7 mm. The concave surface where the reflector is fixed is manufactured to a high degree of surface finish. The fiberglass reinforced parabolic trough was tested under a load corresponding to the force applied by a blowing wind with 34 m/s. Distortion of the parabola due to wind loading was found to be within acceptable limits. The thermal performance of the newly developed fiberglass reinforced parabolic collector was determined according to ASHRAE Standard 93 [ASHRAE Standard 93, 1986. Method of testing to determine the thermal performance of solar collectors. American Society of Heating, Refrigerating and Air-Conditioning Engineers, Atlanta, GA]. The standard deviation of the distribution of the parabolic surface errors is estimated as 0.0066 rad from the collector performance test according to ASHRAE Standard 93 (1986), which indicates the high accuracy of the parabolic surface.  相似文献   

16.
In this paper, thermal performance analysis of 20 m2 prototype fuzzy focal solar dish collector is presented. The focal image characteristics of the solar dish are determined to propose the suitable design of absorber/receiver. First, theoretical thermal performance analysis of the fuzzy focal solar parabolic dish concentrator with modified cavity receiver is carried out for different operating conditions. Based on the theoretical performance analysis, the total heat loss (conduction, convection and radiation heat losses) from the modified cavity receiver is estimated. It is observed that the maximum theoretical efficiencies of solar dish collector are found to be as 79.2% for no wind conditions and 78.2% and 77.8% for side-on and head-on winds speed of 5 m/s respectively. Latter, real time analysis of parabolic dish collector with modified cavity receiver is carried out in terms of stagnation test, time constant test and daily performance test. From stagnation test, the overall heat loss coefficient is found to be 356 W/m2 K. The time constant test is carried out to determine the influence of sudden change in solar radiation at steady state conditions. The daily performance tests are conducted for different flow rates. It is found that the efficiency of the collector increases with the increase of volume flow rates. The average thermal efficiencies of the parabolic dish collector for the volume flow rate of 100 L/h and 250 L/h are found to be 69% and 74% for the average beam radiation (Ibn) of 532 W/m2 and 641 W/m2 respectively.  相似文献   

17.
利用太阳能集热器制得低温热水作为地板辐射采暖系统的热源,是一种清洁、节能、舒适的采暖方式。在南京地区搭建了太阳能地板辐射采暖系统实验台,系统运行策略为白天集热、夜晚采暖,通过实验得到了集热器集热效率、地板进出水温度、室内不同朝向围护结构温度、不同高度的空气温度等参数,最后对系统的性能进行了概括和总结。  相似文献   

18.
利用太阳能空气加热系统实验台,对黑、深绿和深蓝3种颜色无盖板渗透型集热器的热性能进行了户外瞬态对比试验。试验结果表明:太阳辐射照度和风量是影响系统热性能的重要因素。在高档和低档两种风量下,黑色集热器的瞬时平均热效率分别为76.04%和67.50%,高于普通平板太阳能空气集热器;集热器表面颜色对其热性能有一定影响,在高档和低档两种风量下,深绿色和深蓝色集热器的瞬时平均热效率比黑色集热器低15%~22%,空气温升低3~4℃,但仍然优于普通平板空气集热器。从保持建筑立面美观考虑,无盖板渗透型集热器的集热板可以采用颜色较深的彩色,不会对系统热性能造成较大影响。  相似文献   

19.
Electricity production using solar thermal energy is one of the main research areas at present in the field of renewable energies, these systems being characterised by the need of reliable control systems aimed at maintaining desired operating conditions in the face of changes in solar radiation, which is the main source of energy. A new prototype of solar system with parabolic trough collectors was implemented at the Plataforma Solar de Almería (PSA, South-East Spain) to investigate the direct steam generation process under real solar conditions in the parabolic solar collector field of a thermal power plant prototype. This paper presents details and some results of the application of a control scheme designed and tested for the recirculation operation mode, for which the main objective is to obtain steam at constant temperature and pressure at the outlet of the solar field, so that changes produced in the inlet water conditions and/or solar radiation will only affect the amount of steam produced by the solar field. The steam quality and consequently the nominal efficiency of the plant are thus maintained.  相似文献   

20.
A general definition of the effective efficiency of solar collector operating in a solar energy system is presented which gives a fair method of comparison of different collectors operating in that particular application. Based on comparison between the area required for the actual collector and that of a perfect collector-both giving the same fraction solar—the definition permits the definition of the effective average value of the collector input parameter, P = (TfiTa)/S. The concept of the perfect collector also leads to a fair definition for the efficiency of the storage component in a solar heating system. These parameters are evaluated for the special case of residential space heating and service hot water systems of the standardized f-chart type operating in a number of Canadian cities. Simple methods for collector comparisons result from the study and indications are that a simple solar system design method will follow.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号