首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 748 毫秒
1.
A simply designed and the low-cost parabolic-type solar cooker (SPC) was made and tested. The energy end exergy efficiencies of the cooker were experimentally evaluated. The experimental time period was from 10:00 to 14:00 solar time. During this period, it was found that the daily average temperature of water in the SPC was 333 K and the daily average difference between the temperature of water in the cooking pot and the ambient air temperature was 31.6 K. The energy output of the SPC varied between 20.9 and 78.1 W, whereas its exergy output was in the range 2.9–6.6 W. The energy and exergy efficiencies of the SPC were in the range, respectively, 2.8–15.7% and 0.4–1.25%.  相似文献   

2.
There is a complex heat and mass transfer phenomenon in the solar stills. It is desired to examine the ways of maximizing the efficiency with the help of an effective thermodynamic tool, i.e., energy and exergy analysis. In this paper, a thermodynamic model has been developed to estimate the overall instantaneous exergy efficiency of the single-effect horizontal basin-type ideal passive solar stills. Theoretical overall instantaneous exergy efficiency of a passive solar still having 30° tilt angle of glass cover and water depth of 0.04 m on a typical day in June is evaluated and found in the range 0.06 to 5.9 % for the variation of experimental results of energy efficiency from 8 to 87.2 %. The daily energy and exergy efficiency of the solar still is 20.7 and 1.31 %, respectively. An optimum exergy efficiency of the ideal solar still is found to be 21.11 % corresponding to 80 % ultimate energy efficiency and at a typical operating condition. A feasible target of optimum exergy efficiency has been set under assumed ideal conditions to achieve in the future for the real working passive solar stills. It is also confirmed that the overall exergy efficiency increases with the increase of water temperature and decreases with the increase of ambient temperature.  相似文献   

3.
Exergy analysis of the solar cylindrical-parabolic cooker   总被引:2,自引:1,他引:1  
Richard Petela   《Solar Energy》2005,79(3):221-233
For the first time the simple solar parabolic cooker (SPC), of the cylindrical trough shape, is analysed from the exergy viewpoint. The paper presents the methodology of detailed exergy analysis of the SPC, the distribution of the exergy losses, and, on the example of the cooker surfaces, explains the general problem of how the exergy loss on any radiating surface, should be determined, if the surface absorbs many radiation fluxes of different temperatures. An imagined surface was used in the considerations to close the system of the cooker surfaces. It was shown that optimization is needed, to increase the energy and exergy efficiencies of the cooker.Equations for heat transfer between the three surfaces: cooking pot, reflector and imagined surface making up the system, were derived. The model allowed for theoretical estimation of the energy and exergy losses: unabsorbed insolation, convective and radiative heat transfer to the ambient, and additionally, for the exergy losses: the radiative irreversibilities on the surfaces, and the irreversibility of the useful heat transferred to the water.The exergy efficiency of the SPC, was found to be relatively very low (1%), and to be about 10 times smaller than the respective energy efficiency which is in agreement with experimental data from the literature. The influence of the input parameters (geometrical configuration, emissivities of the surfaces, heat transfer coefficients and temperatures of water and ambience) was determined on the output parameters, the distribution of the energy and exergy losses and the respective efficiencies.  相似文献   

4.
This communication is based on exergy concept for the utilization of solar thermal energy in a Rankine cycle‐based fuel‐fired thermal power plant (FFTPP). It has been shown that solar thermal energy as an aided source for feed water preheating helps to reduce the exergy loss in feed water heater (FWH) of Rankine cycle and develops more work than that could have been produced in a solar thermal power plant (STPP). It has been found that this enhancement in work increases for low‐pressure FWHs. For further illustration, a case study has been carried out of a typical 50 kW STPP and a 220 MW FFTPP. The effect of utilizing the same input solar thermal energy of typical STPP, if used as an aided source in a 220 MW FFTPP for feed water preheating is investigated. The work output of STPP is 59.312 kW, while the extra work output of FFTPP by using solar thermal energy of STPP is 90.27 kW. It has been found that the efficiency of work conversion of aided solar thermal energy in FFTPP is higher than the efficiency of work conversion in STPP. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

5.
This work focuses on the structure, working, and testing of a new mixed solar cooker using a linear Fresnel collector, evacuated tube and box-type cooker. The low-cost components used in the construction of this cooker can help it satisfy the needs of both urban and rural inhabitants who need steady cooking temperatures above 140°C. A family of five can prepare four meals using this modified solar cooker, which costs about $250. The designed solar cooker was tested by conducting no-load and full-load tests. For the no-load test, the maximum temperature of the absorber plate and oil for the new mixed cooker was recorded as 160.26°C and 172.72°C, respectively. The absorber plate of the new mixed cooker and its oil both reached their highest temperatures during the full-load test at 141.14°C and 157°C, respectively. The energy efficiency of the new cooker is 58.776%, while its exergy efficiency is 13%. The heat transfer coefficient increased to 100.16 W/m² °C. This cooker provides an additional time savings of 60 min. An improvement of 27.5% in the highest temperature reached was seen when the developed cooker's performance was compared with those reported in the literature. Additionally, the new cooker's heat-storing capability enables up to 3 h of autonomy. The Levelized Cost of Cooking a Meal for the innovative mixed solar cooker is $0.034 per meal.  相似文献   

6.
A large-size solar cooker for animal feed has been designed, developed and tested. The cooker employs locally available materials of low cost, e.g. pearl-millet husk and horse excreata. The commercial materials required for its fabrication are plain glass, mild steel angle and sheet, wood and aluminium sheet cooking utensils. The solar cooker is capable of boiling 10 kg of animal feed, sufficient for five cattle per day. The efficiency of the solar cooker is 21·8%. The cost of the cooker is only Rs 1200, which can be recovered in 0·45-1·36 years depending upon the fuel it replaces. The short payback periods suggest that the use of the solar cooker is economic. The use of the cooker will save a lot of firewood, cowdung cake and agricultural waste which are presently used for the boiling of animal feed.  相似文献   

7.
佣分析方法是低温法精馏过程分析,也是空气分离过程节能分析的主要方法。本文使用空分有效能分析(EAASU)系统对唐钢气体公司的40000m。m(标准)空分装置进行了分析,其设计工况的流程效率为45.25%。分析结果表明,气态产品中氧的摩尔l厢最大,液态产品中氩的摩尔炯最大;同种产品中液态摩尔炯大于气态摩尔炯。在相同环境条件和加工空气量的情况下,增加液态产品的产量,尤其是液氩的产量,可以提高空分装置的流程效率。以设计工况作为参照,基于EAASU软件进一步分析了不同产量的流程炯效率,即当液体总产量增加9%,则流程炯效率提高0.65%以上;气氧产量增加10%,则流程炯效率可提高1,56%。  相似文献   

8.
In this experimental study, solar energy was stored daily using the volcanic material with the sensible heat technique. The external heat collection unit consisted of 27 m2 of south‐facing solar air collectors mounted at a 55° tilt angle. The dimensions of the packed‐bed heat storage unit were 6 × 2 × 0.6 m deep. The packed‐bed heat storage unit was built under the soil. The heat storage unit was filled with 6480 kg of volcanic material. Energy and exergy analyses were applied in order to evaluate the system efficiency. During the charging periods, the average daily rates of thermal energy and exergy stored in the heat storage unit were 1242 and 36.33 W, respectively. Since the rate of exergy depends on the temperature of the heat transfer fluid and surrounding, the rate of exergy increased as the difference between the inlet and outlet temperatures of the heat transfer fluid increased during the charging periods. It was found that the average daily net energy and exergy efficiencies in the charging periods were 39.7 and 2.03%, respectively. The average daily net energy efficiency of the heat storage system remained nearly constant during the charging periods. The maximum energy and exergy efficiencies of the heat storage system were 52.9 and 4.9%, respectively. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

9.
Abstract

Energy and exergy analysis, in the thermodynamics, is an important tool used to predict the performance of drying system. In this work, energy and exergy analyses are made during the drying process of banana using an indirect type passive solar dryer. Solar flat plate air collector is used to heat the air. Banana gets sufficiently dried at temperatures between 28 and 82?°C. Solar radiation is measured and it is ranged from 335 to 1210?W/m2. Using the first law of thermodynamics, energy analysis was carried out to estimate the amounts of energy gained from solar air heater. Also, applying the second law of thermodynamics, exergy analysis was carried out to determine exergy losses during the drying process. The exergy losses varied from 3.36 to 25.21?kJ/kg. In particular, the exergy efficiency values vary from 7.4 to 45.32%.  相似文献   

10.
In this paper, an attempt is made to investigate the performance characteristics of a photovoltaic (PV) and photovoltaic-thermal (PV/T) system based on energy and exergy efficiencies, respectively. The PV system converts solar energy into DC electrical energy where as, the PV/T system also utilizes the thermal energy of the solar radiation along with electrical energy generation. Exergy efficiency for PV and PV/T systems is developed that is useful in studying the PV and PV/T performance and possible improvements. Exergy analysis is applied to a PV system and its components, in order to evaluate the exergy flow, losses and various efficiencies namely energy, exergy and power conversion efficiency. Energy efficiency of the system is calculated based on the first law of thermodynamics and the exergy efficiency, which incorporates the second law of thermodynamics and solar irradiation exergy values, is also calculated and found that the latter is lower for the electricity generation using the considered PV system. The values of “fill factor” are also determined for the system and the effect of the fill factor on the efficiencies is also evaluated. The experimental data for a typical day of March (27th March 2006) for New Delhi are used for the calculation of the energy and exergy efficiencies of the PV and PV/T systems. It is found that the energy efficiency varies from a minimum of 33% to a maximum of 45% respectively, the corresponding exergy efficiency (PV/T) varies from a minimum of 11.3% to a maximum of 16% and exergy efficiency (PV) varies from a minimum of 7.8% to a maximum of 13.8%, respectively.  相似文献   

11.
This paper presents an experimental investigation of the thermal performance of a solar air heater having its flow channel packed with Raschig rings. The packing improves the heat transfer from the plate to the air flow underneath. The dimensions of the heater are 0.9 m wide and 1.9 m long. The aluminium‐based absorber plate was coated with ordinary black paint. The characteristic diameter of the Raschig rings, made of black polyvinyl chloride (PVC) tube, is 50 mm and the depth of the packed‐bed in flow channel is 60 mm. Energy and exergy analyses were applied for evaluating the efficiency of the packed‐bed solar air heater. The rate of heat recovered from the packed‐bed solar air heater varied between 9.3 and 151.5 W m?2, while the rate of thermal exergy recovered from the packed‐bed solar air heater varied between 0.04 and 8.77 W m?2 during the charging period. The net energy efficiency varied from 2.05 to 33.78%, whereas the net exergy efficiency ranged from 0.01 to 2.16%. It was found that the average daily net energy and exergy efficiencies were 17.51 and 0.91%, respectively. The energy and exergy efficiencies of the packed‐bed solar air heater increased as the outlet temperature of heat transfer fluid increased. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

12.
A novel solar cooker that does not require any tracking, has been designed, fabricated and tested and its performance has been compared with the hot-box solar cooker. The performance of the novel solar cooker is almost similar with the hot-box solar cooker though it is kept fixed while the hot box is tracked towards the sun every hour. The overall efficiency of the novel solar cooker has been found to be 29·5%. The payback period varies between 1·30 and 3·29 years depending upon the fuel it replaces. The payback periods are in the increasing order with respect to fuels such as firewood, coal, electricity, kerosene and LPG. The short payback period shows that the use of the novel non-tracking solar cooker is economical. © 1998 John Wiley & Sons, Ltd.  相似文献   

13.
Energy-efficient new cooking techniques have been developed in this research. Using a stove with 649?±?20 W of power, the minimum heat, specific heat of transformation, and on-stove time required to completely cook 1 kg of dry beans (with water and other ingredients) and 1 kg of raw potato are found to be: 710 (±24)?kJ, 613 (±20)?kJ, and 1,144?±?10 s, respectively, for beans and 287?±?12 kJ, 200?±?9 kJ, and 466?±?10 s for Irish potato. Extensive researches show that these figures are, to date, the lowest amount of heat ever used to cook beans and potato and less than half the energy used in conventional cooking with a pressure cooker. The efficiency of the stove was estimated to be 52.5?±?2 %. Discussion is made to further improve the efficiency in cooking with normal stove and solar cooker and to save food nutrients further. Our method of cooking when applied globally is expected to contribute to the clean development management (CDM) potential. The approximate values of the minimum and maximum CDM potentials are estimated to be 7.5?×?1011 and 2.2?×?1013?kg of carbon credit annually. The precise estimation CDM potential of our cooking method will be reported later.  相似文献   

14.
Available solar exergy in an absorption cooling process   总被引:1,自引:0,他引:1  
Using the global solar radiation on a flat plate converter of selective surface, the process temperature, the ambient temperature and the characteristics of the collector as initial data; the maximum available exergy for feeding a lithium bromide absorption cooling machine and its daily distribution in Madrid is determined. The conversion of solar radiation into exergy is calculated through the Müser endoreversible engine. The model, which takes into account the relative Sun-Earth movements, the presence of the atmosphere, the transitory regime, the losses to the surroundings and the losses caused by the heat capacities effect, allows a maximum hourly exergy efficiency of the available heat between 11 and 14.6% and a daily exergy efficiency in the order of 3% to be obtained. The maximum available daily exergy varies from 800 kJ/(m2 day) for a very hot clear day to 950 kJ/(m2 day) for a warm clear day.  相似文献   

15.
In this paper, the end-use efficiencies of the different energy carriers and the overall energy efficiency in the Nigerian residential sector (NRS) were estimated using energy and exergy analysis. The energy and exergy flows were considered from 2006 to 2011. The overall energy efficiency ranges from 19.15% in 2006 to 20.19% in 2011 with a mean of (19.96±0.23)% while the overall exergy efficiency ranges from 4.34% in 2006 to 4.40% in 2011 with a mean of (4.31±0.059)%. The energy and exergy efficiency margin was 15.58% with a marginal improvement of 0.07% and 0.02%, respectively when compared with previous results. The contribution of the energy carriers to the total energy and exergy inputs were 1.45% and 1.43% for electricity, 1.95% and 3% for fossil fuel and 96.6% and 95.57% for bio-fuel. The result shows that approximately 65% of the residence use wood and biomass for domestic cooking and heating, and only a fraction of the residence have access to electricity. LPG was found to be the most efficient while kerosene, charcoal, wood and other biomass the least in this order. Electricity utilization exergy efficiency is affected by vapor-compression air conditioning application apart from low potential energy applications. In addition, this paper has suggested alternatives in the end-use application and has demonstrated the relevance of exergy analysis in enhancing sustainable energy policies and management and improved integration techniques.  相似文献   

16.
Supercritical water gasification (SCWG) is a promising innovative black liquor handling method. The low concentration of black liquor is a burden for the system scale and investment cost. In this study, we introduced black liquor evaporator to increase the concentration using self-generated steam and power, and studied its influence on the energy and exergy efficiency. The results showed that increasing black liquor concentration from 10 wt% to 20 wt% reduced the energy efficiency but increased the exergy efficiency of the system without evaporator. With the evaporator, an optimal target concentration existed for the exergy efficiency owing to the influence of the target concentration on the balance between the energy consumption and saving brought by the evaporator. With black liquor condensed from 15 wt% to 21.82 wt%, maximum exergy efficiency of the system (41.95%) was obtained. For lower-concentration black liquor, more water needs to be evaporated to get the optimal concentration and evaporator was more desired because it brought greater improvement on the exergy efficiency. The increasing effect number of multi-effect evaporator shifted the optimal concentration to higher values, which increased from 19.93 wt% to 23.13 wt% when the effect number increased from 4 to 7. The exergy efficiency of the system was also improved, and the improvement was more significant at higher target concentration.  相似文献   

17.
In this paper, combined first and second law approach is applied to investigate the effects of percent excess air and ambient temperature on the energy and exergy efficiency of the hydrogen-fuelled homogeneous charge compression ignition engine. A maximum energy efficiency of 45% and an exergy efficiency of 37% are obtained at the excess air of 25%. A narrow range of 42–40% energy efficiency and a wide range of 25–45% exergy efficiency were achieved between the 20–40% excess air and an ambient temperature of 300 K. Close range of variation for energy efficiency (48–44%) and exergy efficiency (32–36%) were achieved between the ambient temperatures of 13°C and 41°C. Exergy analysis indicates that 52% of the fuel hydrogen exergy is destroyed due to various irreversible processes of the engine, around 40% is available as a useful work output, and 7.83% is lost via engine exhaust.  相似文献   

18.
The development of efficient long-term heat storage systems could significantly increase the use of solar thermal energy for building heating. Among the different heat storage technologies, the absorption heat storage system seems promising for this application. To analyze the potential of this technology, a numerical model based on mass, species, energy, and exergy balances has been developed. The evolution over time of the storage imposes a transient approach. Simulations were performed considering temperature conditions close to those of a storage system used for space heating coupled to solar thermal collectors (as the heat source), with ground source heat exchangers (as the cold source). The transient behavior of the system was analyzed in both the charging and discharging phases. This analysis highlights the lowering of energetic and exergetic performance during both phases, and these phenomena are discussed. The thermal efficiency and the energy storage density of the system were determined, equal to 48.4 % and 263 MJ/m3, respectively. The exergetic efficiency is equal to 15.0 %, and the exergy destruction rate is 85.8 %. The key elements in terms of exergy destruction are the solution storage tank, the generator, and the absorber. The impact of using a solution heat exchanger (SHX) was studied. The risk of the solution crystallizing in the SHX was taken into account. With a SHX, the thermal efficiency of the system can reach 75 %, its storage density was 331 MJ/m3, and its exergetic efficiency and exergy destruction rate was 23.2 and 77.3 %, respectively.  相似文献   

19.
Developing a test standard/protocol for solar box type cookers has drawn a considerable interest among the researchers throughout the world. Recent publications on solar cookers emphasize the need of introducing the thermal performance indicators determined through exergy analysis. In the present paper, the time variation of instantaneous exergy output and energy output as function of its temperature and also of the instantaneous ambient temperature have been reported for truncated pyramid type solar box cooker and compared with those of box type cooker. Further, variations in the exergy lost with temperature difference have been depicted for the selected water temperature range from 60 °C to 95 °C. Based on this study, quality factor, exergy temperature difference gap product, and heat loss coefficient are determined and are proposed as benchmark parameters of solar cooker’s thermal performance.  相似文献   

20.
In this paper, exergy modeling is used to assess the exergetic performance of a novel trigeneration system using parabolic trough solar collectors (PTSC) and an organic Rankine cycle (ORC). Four cases are considered: electrical-power, cooling-cogeneration, heating-cogeneration, and trigeneration. In this trigeneration system a single-effect absorption chiller is utilized to provide the necessary cooling energy and a heat exchanger is utilized to provide the necessary heating energy. The trigeneration system considered is examined using three modes of operation. They are: solar mode during the low-solar radiation time of the day, solar and storage mode during the high-solar radiation time of the day, and storage mode during night time. The storage mode is operated through the heat collected in a thermal storage tank during the solar and storage mode. The exergy efficiencies and exergy destruction rates are examined under the variation of the ORC evaporator pinch point temperature, ORC pump inlet temperature, and turbine inlet pressure. This study reveals that the maximum electrical-exergy efficiency for the solar mode is 7%, for the solar and storage mode is 3.5%, and for the storage mode is 3%. Alternatively, when trigeneration is used, the exergy efficiency increases noticeably. The maximum trigeneration-exergy efficiency for the solar mode is 20%, for solar and storage mode is 8%, and for the storage mode is 7%. Moreover, this study shows that the main sources of exergy destruction rate are the solar collectors and ORC evaporators. Therefore, careful selection and design of these two components are essential to reduce the exergy destructed by them and, thus, increase the exergy efficiencies of the system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号