首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Strontium tantalate (STO) films were grown by liquid-delivery (LD) metalorganic chemical vapor deposition (MOCVD) using Sr[Ta(OEt)5(OC2H4OMe)]2 as precursor. The deposition of the films was investigated in dependence on process conditions, such as substrate temperature, pressure, and concentration of the precursor. The growth rate varied from 4 to 300 nm/h and the highest rates were observed at the higher process temperature, pressure, and concentration of the precursor. The films were annealed at temperatures ranging from 600 to 1000 °C. Transmission electron microscopy (TEM), X-ray diffraction (XRD), and ellipsometry indicated that the as-deposited and the annealed films were uniform and amorphous and a thin (>2 nm) SiO2 interlayer was found. Crystallization took place at temperatures of about 1000 °C. Annealing at moderate temperatures was found to improve the electrical characteristics despite different film thickness (effective dielectric constant up to 40, the leakage current up to 6×10−8 A/cm2, and lowest midgap density value of 8×1010 eV−1 cm−2) and did not change the uniformity of the STO films, while annealing at higher temperatures (1000 °C) created voids in the film and enhanced the SiO2 interlayer thickness, which made the electrical properties worse. Thus, annealing temperatures of about 800 °C resulted in an optimum of the electrical properties of the STO films for gate dielectric applications.  相似文献   

2.
Dependence of oxygen partial pressures on structural and electrical characteristics of HfAlO (Hf:Al=1:1) high-k gate dielectric ultra-thin films grown on the compressively strained Si83Ge17 by pulsed-laser deposition were investigated. The microstructure and the interfacial structure of the HfAlO thin films grown under different oxygen partial pressures were studied by transmission electron microscopy, and the their electrical properties were characterized by capacitance–voltage (CV) and conductance–voltage measurements. Dependence of interfacial layer thickness and CV characteristics of the HfAlO films on the growth of oxygen pressure was revealed. With an optimized oxygen partial pressure, an HfAlO film with an effective dielectric constant of 16 and a low interface state density of 2.1×1010 cm−2 eV−1 was obtained.  相似文献   

3.
MOS capacitors were produced on n-type 4H-SiC using oxidized polycrystalline silicon (polyoxide). The polyoxide samples grown by dry oxidation without an anneal had a high interface state density (Dit) of 1.8 × 1012 cm−2 eV−1 and the polyoxide samples grown by wet oxidation had a lower Dit of 1.2 × 1012 cm−2 eV−1 (both at 0.5 eV below the conduction band). After 1 h Ar annealing, the Dit of wet polyoxide was reduced significantly to 2.6 × 1011 cm−2 eV−1 (at 0.5 eV below the conduction band). Dry polyoxide exhibits higher breakdown electric fields than wet polyoxide. The interface quality and breakdown characteristics of polyoxide are comparable to published results of low-temperature CVD deposited oxides.  相似文献   

4.
Metal-oxide-semiconductor capacitors based on HfO2 gate stack with different metal and metal compound gates (Al, TiN, NiSi and NiAlN) are compared to study the effect of the gate electrode material on the trap density at the insulator–semiconductor interface.CV and Gω measurements were made in the frequency range from 1 kHz to 1 MHz in the temperature range 180–300 K. From the maximum of the plot G/ω vs. ln(ω) the density of interface states was calculated, and from its position on the frequency axis the trap cross-section was found. Reducing temperature makes it possible to decrease leakage current through the dielectric and to investigate the states located closer to the band edge.The structures under study were shown to contain significant interface trap densities located near the valence band edge (around 2×1011 cm−2eV−1 for Al and up to (3.5–5.5)×1012 cm−2 eV−1 for other gate materials). The peak in the surface state distribution is situated at 0.18 eV above the valence band edge for Al electrode. The capture cross-section is 5.8×10−17 cm2 at 200 K for Al–HfO2–Si structure.  相似文献   

5.
Long channel Ge FETs and capacitors with CeO2/HfO2/TiN gates were fabricated by photolithography and gate wet etch. Rare earth CeO2 in direct contact with Ge was used as a passivating layer producing lowest Dit values in the mid 1011 eV−1 cm−2 range. HfO2 cap reduces leakage and improves equivalent oxide thickness scaling of the whole gate stack. The p-FETs show exceptionally high ION/IOFF ratio 106, mainly due to low OFF current, and peak channel mobility around 80 cm2/V s. The n-FETs, although functional, show inferior performance producing ON currents an order of magnitude lower compared to p-FETs.  相似文献   

6.
Metal–oxide–semiconductor (MOS) capacitors based on HfO2 gate stacks with Al and TiN gates are compared to study the effect of the gate electrode material to the properties of insulator–semiconductor interface. The structures under study were shown to contain interface trap densities of around 2 × 1011 cm−2 eV−1 for Al gate and up to 5.5 × 1012 cm−2 eV−1 for TiN gate. The peak in the surface state distribution was found at 0.19 eV above the valence band edge for Al electrode. The respective capture cross-section is 6 × 10−17 cm2 at 200 K.The charge injection experiments have revealed the presence of hole traps inside the dielectric layer. The Al-gate structure contains traps with effective capture cross-section of 1 × 10−20 cm2, and there are two types of traps in the TiN-gate structure with cross-sections of 3.5 × 10−19 and 1 × 10−20 cm2. Trap concentration in the structure with Al electrode was considerably lower than in the structure with TiN electrode.  相似文献   

7.
The defects induced by inductively coupled plasma reactive ion etching (ICP-RIE) on a Si-doped gallium nitride (GaN:Si) surface have been analyzed. According to the capacitance analysis, the interfacial states density after the ICP-etching process may be higher than 5.4 × 1012 eV−1 cm−2, compared to around 1.5 × 1011 eV−1 cm−2 of non-ICP-treated samples. After the ICP-etching process, three kinds of interfacial states density are observed and characterized at different annealing parameters. After the annealing process, the ICP-induced defects could be reduced more than one order of magnitude in both N2 and H2 ambient. The H2 ambient shows a better behavior in removing ICP-induced defects at a temperature around 500 °C, and the interfacial states density around 2.2 × 1011 eV−1 cm−2can be achieved. At a temperature higher than 600 °C, the N2 ambient provides a much more stable interfacial states behavior than the H2 ambient.  相似文献   

8.
We have fabricated thin catalytic metal–insulator–silicon carbide based structure with palladium (Pd) gates using TiO2 as the dielectric. The temperature stability of the capacitor is of critical importance for use in the fabrication of electronics for deployment in extreme environments. We have evaluated the response to temperatures in excess of 450 °C in air and observed that the characteristics are stable. Results of high temperature characterization are presented here with extraction of interface state density up to 650 °C. The results show that at temperatures below 400 °C the capacitors are stable, with a density of interface traps of approximately 6×1011 cm2 eV−1. Above this temperature the CV and GV characteristics show the influence of a second set of traps, with a density around 1×1013 cm2 eV−1, which is close to that observed for slow states near the conduction band edge. The study of breakdown field as a function of temperature shows two distinct regions, below 300 °C where the breakdown voltage has a strong temperature dependence and above 300, where it is weaker. We hypothesize that the oxide layer dominates the breakdown voltage at low temperature and the TiO2 layer above 300 °C. These results at high temperatures confirms the suitability of the Pd/TiO2/SiO2/SiC capacitor structure for stable operation in high temperature environments.  相似文献   

9.
This work is an attempt to estimate the electrical properties of SiO2 thin films by recording and analyzing their infrared transmission spectra. In order to study a big variety of films having different infrared and electrical properties, we studied SiO2 films prepared by low pressure chemical vapor deposition (LPCVD) from SiH4 + O2 mixtures at 425 °C and annealed at 750 °C and 950 °C for 30 min. In addition thermally grown gate quality SiO2 films of similar thickness were studied in order to compare their infrared and electrical properties with the LPCVD oxides. It was found that all studied SiO2 films have two groups of Si–O–Si bridges. The first group corresponds to bridges located in the bulk of the film and far away from the interfaces, the grain boundaries and defects and the second group corresponds to all other bridges located near the interfaces, the grain boundaries and defects. The relative population of the bulk over the boundary bridges was found equal to 0.60 for the LPCVD film after deposition and increased to 4.0 for the LPCVD films after annealing at 950 °C. Thermally grown SiO2 films at 950 °C were found to have a relative population of Si–O–Si bridges equal to 3.9. The interface trap density of the LPCVD film after deposition was found equal to 5.47 × 1012 eV−1 cm−2 and decreases to 6.50 × 1010 eV−1 cm−2 after annealing at 950 °C for 30 min. The interface trap density of the thermally grown film was found equal to 1.27 × 1011 eV−1 cm−2 showing that films with similar Si–O–Si bridge populations calculated from the FTIR analysis have similar interface trap densities.  相似文献   

10.
Distribution of interface states at the emitter–base heterojunctions in heterostructure bipolar transistors (HBTs) is characterized by using current–voltage characteristics using sub-bandgap photonic excitation. Sub-bandgap photonic source with a photon energy Eph which is less than the energy bandgap Eg (Eg,GaAs = 1.42, Eg,AlGaAs = 1.76 eV) of emitter, base, and collector of HBTs, is employed for exclusive excitation of carriers only from the interface states in the photo-responsive energy range at emitter–base heterointerface. The proposed method is applied to an Al0.3Ga0.7As/GaAs HBT (AE = WE × LE = 250 × 100 μm2) with Eph = 0.943 eV and Popt = 3 mW. Extracted interface trap density Dit was observed to be Dit,max  4.2 × 1012 eV−1 cm−2 at emitter–base heterointerface.  相似文献   

11.
Novel gate stacks with epitaxial gadolinium oxide (Gd2O3) high-k dielectrics and fully silicided (FUSI) nickel silicide (NiSi) gate electrodes are investigated. Ultra-low leakage current densities down to 10–7 A cm–2 are observed at a capacitance equivalent oxide thickness of CET=1.8 nm. The influence of a titanium nitride (TiN) capping layer during silicidation is studied. Furthermore, films with an ultra-thin CET of 0.86 nm at a Gd2O3 thickness of 3.1 nm yield current densities down to 0.5 A cm−2 at Vg=+1 V. The extracted dielectric constant for these gate stacks ranges from k=13 to 14. These results emphasize the potential of NiSi/Gd2O3 gate stacks for future material-based scaling of CMOS technology.  相似文献   

12.
The trapping/detrapping behavior of charge carriers in ultrathin SiO2/TiO2 stacked gate dielectric during constant current (CCS) and voltage stressing (CVS) has been investigated. Titanium tetrakis iso-propoxides (TTIP) was used as the organometallic source for the deposition of ultra-thin TiO2 films at low temperature (<200 °C) on strained-Si/relaxed-Si0.8Ge0.2 heterolayers by plasma-enhanced chemical vapor deposition (PECVD) in a microwave (700 W, 2.45 GHz) plasma cavity discharge system at a pressure of 66.67 Pa. Stress-induced leakage current (SILC) through SiO2/TiO2 stacked gate dielectric is modeled by taking into account the inelastic trap-assisted tunneling (ITAT) mechanism via traps located below the conduction band of TiO2 layer. The increase in the gate current density observed during CVS from room temperature up to 125 oC has been analyzed and modeled considering both the buildup of charges in the layer as well as the SILC contribution. Trap generation rate and trap cross-section are extracted. A capture cross-section in the range of 10−19 cm2 as compared to 10−16 cm2 in SiO2 has been observed. A temperature-dependent trap generation rate and defects have also been investigated using time-dependent current density variation during CVS. The time dependence of defect density variation is calculated within the dispersive transport model, assuming that these defects are produced during random hopping transport of positively charge species in the insulating high-k stacked layers. SILC generation kinetics, i.e. defect generation probability under different injected fluences for various high-constant stress voltages in both polarities have been studied. An empirical relation between trap generation probability and applied stress voltage for various injected fluences has been developed.  相似文献   

13.
Results of a study of electrically active defects induced in Sb-doped Ge crystals by implantations of hydrogen and helium ions (protons and alpha particles) with energies in the range from 500 keV to 1 MeV and doses in the range 1×1010–1×1014 cm−2 are presented in this work. Transformations of the defects upon post-implantation isochronal anneals in the temperature range 50–350 °C have also been studied. The results have been obtained by means of capacitance–voltage (CV) measurements and deep-level transient spectroscopy (DLTS).It was found from an analysis of DLTS spectra that low doses (<5×1010 cm−2) of H and He ion implantations resulted in the introduction of damage similar to that observed after MeV electron irradiation. The Sb–vacancy complex was the dominant deep-level defect in the lightly implanted samples. After implantations with doses higher than 5×1010 cm−2 peaks due to more complex defects were observed in the DLTS spectra. Implantations with heavy (5×1013 cm−2) doses of both H and He ions caused the formation of a sub-surface layer with a high (up to 1×1017 cm−3) concentration of donors. These donors were eliminated by anneals at temperatures in the range 100–200 °C. Heat treatments of the heavy proton-implanted Ge samples in the temperature range 250–300 °C resulted in the formation of shallow hydrogen-related donors, the concentration of which was the highest in a region close to the projected depth of implanted protons. The maximum peak concentration of the H-related donors was higher than 1×1015 cm−3 for a proton implantation dose of 1×1014 cm−2.  相似文献   

14.
The current–voltage and capacitance–voltage characteristics of the nanostructure SnO2/p-Si diode have been investigated. The optical band gap and microstructure properties of the SnO2 film were analyzed by optical absorption method and scanning electron microscopy, respectively. The optical band of the film was found to be 3.58 eV with a direct optical transition. The scanning electron microcopy results show that the SnO2 film has the nanostructure. The ideality factor, barrier height and series resistance values of the nanostructure SnO2/p-Si diode were found to be 2.1, 0.87 eV and 36.35 kΩ, respectively. The barrier height obtained from CV measurement is higher than obtained from IV measurement and this discrepancy can be explained by introducing a spatial distribution of barrier heights due to barrier height inhomogeneities, which are available at the nanostructure SnO2/p-Si interface. The interface state density of the diode was determined by conductance technique and was found to be 8.41 × 1010 eV−1 cm−2.It is evaluated that the nanostructure of the SnO2 film has an important effect on the ideality factor, barrier height and interface state density parameters of SnO2/p-Si diode.  相似文献   

15.
We present our first application of the neutral cluster beam deposition (NCBD) method to fabricate bilayer heterojunction-based organic light-emitting field-effect transistors (OLEFETs) by superimposing two layers of α,ω-dihexylsexithiophene (DH6T) and N,N′-ditridecylperylene-3,4,9,10-tetracarboxylic diimide (P13) successively. Based upon well-balanced ambipolarity (hole and electron field-effect mobilities of 2.22 × 10−2 and 2.78 × 10−2 cm2/Vs), the air-stable OLEFETs have demonstrated good field-effect characteristics, stress-free operational stability and electroluminescence under ambient condition.  相似文献   

16.
In this paper, HfO2 dielectric films with blocking layers (BL) of Al2O3 were deposited on high resistivity silicon-on-insulator (HRSOI), and the interfacial and electrical properties are reported. High-resolution transmission electron microscopy (HRTEM) indicated that BL could thin the interfacial layer, keep the interface smooth, and retain HfO2 amorphous after annealing. Energy dispersive X-ray spectroscopy (EDS) and X-ray photoelectron spectroscopy (XPS) confirmed that BL weaken Si diffusion and suppressed the further growth of HfSiO. Electrical measurements indicated that there was no hysteresis was observed in capacitance–voltage curves, and Flatband shift and interface state density is 0.05 V and −1.3 × 1012 cm−2, respectively.  相似文献   

17.
We have grown n- and p-type β-FeSi2 single crystals by the temperature gradient solution growth method using Sn–Ga solvent. The conduction type and the carrier density of the crystals were controlled by the Ga composition in the Sn–Ga solvent. The conduction type was changed from n- to p-type between the Ga composition of 10.2 and 18.5 at% in the solvent. Depending on the Ga composition in the solvent, the carrier density of n- and p-type crystals was changed from 1.5×1017 to 3×1017 cm−3 and 4×1017 to 2×1019 cm−3, respectively. The activation energies of n-type crystals were 0.09–0.11 eV while that of p-type crystals were 0.02–0.03 eV.  相似文献   

18.
The microwave dielectric properties of (1 − x)CaTiO3xNd(Mg1/2Ti1/2)O3 (0.1  x  1.0) ceramics prepared by the conventional solid state method have been investigated. The system forms a solid solution throughout the entire compositional range. The dielectric constant decreases from 152 to 27 as x varies from 0.1 to 1.0. In the (1 − x)CaTiO3xNd(Mg1/2Ti1/2)O3 system, the microwave dielectric properties can be effectively controlled by varying the x value. At 1400 °C, 0.1CaTiO3–0.9Nd(Mg1/2Ti1/2)O3 has a dielectric constant (εr) of 42, a Q × f value of 35 000 GHz and a temperature coefficient of resonant frequency (τf) of −10 ppm/°C. As the content of Nd(Mg1/2Ti1/2)O3 increases, the highest Q × f value of 43 000 GHz for x = 0.9 is achieved at the sintering temperature 1500 °C.  相似文献   

19.
Vertical Schottky rectifiers have been fabricated on a free-standing n-GaN substrate. Circular Pt Schottky contacts with different diameters (50 μm, 150 μm and 300 μm) were prepared on the Ga-face and full backside ohmic contact was prepared on the N-face by using Ti/Al. The electron concentration of the substrate was as low as 7 × 1015 cm−3. Without epitaxial layer and edge termination scheme, the reverse breakdown voltages (VB) as high as 630 V and 600 V were achieved for 50 μm and 150 μm diameter rectifiers, respectively. For larger diameter (300 μm) rectifiers, VB dropped to 260 V. The forward turn-on voltage (VF) for the 50 μm diameter rectifiers was 1.2 V at the current density of 100 A/cm2, and the on-state resistance (Ron) was 2.2 mΩ cm2, producing a figure-of-merit (VB)2/Ron of 180 MW cm−2. At 10 V bias, forward currents of 0.5 A and 0.8 A were obtained for 150 μm and 300 μm diameter rectifiers, respectively. The devices exhibited an ultrafast reverse recovery characteristics, with the reverse recovery time shorter than 20 ns.  相似文献   

20.
Thermal, electrical and spectroscopic properties have been studied for bis(3,5-di(9H-carbazol-9-yl) phenyl)diphenylsilane (SimCP2) which has exhibited high external quantum efficiency of 17.7% and power efficiency of 24.2 lm/W when it is used as host material for iridium bis(4,6-difluorophenypyridinato)picolate (FIrpic) blue emitter. They are compared with 1,3-bis (9-carbazolyl) benzene (mCP) and 3,5-bis (9-carbazolyl) tetraphenylsilane (SimCP) which have been also used as host for blue emitters. SimCP2 exhibits a highest glass transition temperature (148 °C) and is morphologically more stable. The electron and hole mobilities are higher (4.8 × 10−4 and 2.7 × 10−4 cm2 V−1 s−1, respectively, at electric field of 9 × 104 V cm−1) than those of mCP and SimCP. The zero-phonon S1 emission band is observed at 344 nm, while the T1 emission band at 412 nm, i.e., this material preserves the characteristics of wide band-gap of 3.56 eV and high T1 triplet energy of 3.01 eV. From the intensity ratio of the T1 emission to the S1 emission, it is suggested that the intersystem crossing rate is smaller for SimCP2 than for mCP and SimCP. From these results, we clarify the reasons why SimCP2 is superior to mCP and SimCP as the host material for blue phosphorescence emitter in organic light emitting diodes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号