首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A three-dimensional finite element model is developed, validated and used in the parametric study to investigate the influence of shear stud’s position and profiled sheeting thickness on the strength, ductility and failure modes of the headed shear stud welded to the modern profiled sheeting. A total of 240 push tests were analysed with different sheeting thicknesses, positions of the shear stud in the trough, concrete strengths and transverse spacings. The results showed that the sheeting thickness influenced the shear connector resistance of studs placed in the unfavourable position more than studs placed in favourable and central positions. The strength of the shear connector placed in the unfavourable position increased by as much as 30% when the sheeting thickness was increased. The shear connector resistance of the unfavourable stud was found to be primarily a function of the strength and the thickness of the profiled sheeting rather than the concrete strength. The strength prediction equations for unfavourable and central studs were also proposed. The results suggested that the strength of the shear connector increased as the distance of the shear stud increased from the mid-height of the deck rib in the load bearing direction of the stud. The load-slip behaviour of the studs in the unfavourable position was more ductile than the studs in the favourable position, with slip of 2-4 times higher. It was found that the increase in sheeting thickness and transverse spacing improved the ductility of the stud in unfavourable position, but had no effect on the stud in the favourable position. The failure modes suggested that the favourable and central studs failed by concrete cone failure and unfavourable studs failed by rib punching together with crushing of the narrow strip of the concrete in front of the stud.  相似文献   

2.
栓钉剪力连接件滑移性能试验研究及受剪承载力计算   总被引:3,自引:0,他引:3  
根据3组栓钉剪力连接件推出试验,研究栓钉直径和栓钉屈服强度对试件受剪承载力的影响。应用ABAQUS有限元分析软件对栓钉剪力连接件进行精细三维实体有限元分析,栓钉、钢梁和混凝土均采用C3D8R单元,计算结果与试验结果符合较好。基于有限元法进行参数分析,研究栓钉直径、数量、长径比、屈服强度、混凝土强度和横向配筋率等对栓钉剪力连接件荷载-滑移性能的影响,有限元计算结果表明,栓钉受剪承载力随着栓钉直径、屈服强度和混凝土强度的增大而提高。提出了考虑栓钉直径、屈服强度和混凝土强度影响的单个栓钉受剪承载力计算式和荷载-滑移关系计算方法,计算结果与文中试验结果和收集到的81组栓钉剪力连接件有效试验结果进行对比,吻合较好。建议的受剪承载力计算式与现行规范建议公式进行比较,建议的计算式具有较高的精度。荷载-滑移曲线实用计算方法与Ollgaard提出的计算方法比较表明建议计算方法具有较广泛的适用性。  相似文献   

3.
为研究带双排栓钉的组合梁的纵向受剪性能,进行了7个带双排栓钉的钢-混凝土组合梁试件和1个带单排栓钉的钢-混凝土组合梁对比试件的纵向受剪试验。研究栓钉横向或纵向间距、横向配筋率、混凝土强度、栓钉排布方式等因素对带双排栓钉的钢-混凝土组合梁纵向受剪性能和混凝土板破坏形态的影响,并分析了各研究参数对峰值荷载和极限滑移量的影响。结果表明:带双排栓钉的钢-混凝土组合梁试件破坏模式主要表现为“八”字形裂缝的剪切破坏;栓钉横向、纵向间距、混凝土强度以及混凝土板配筋率是影响钢-混凝土组合梁受剪承载力的主要因素;受剪承载力均随着栓钉横向间距、纵向间距、混凝土强度以及混凝土板的横向配筋率的增加而增大。  相似文献   

4.
This paper describes the structural performance of shear connection in composite beams with profiled steel sheeting. An accurate and efficient nonlinear finite element model was developed to study the behaviour of headed stud shear connectors welded through-deck. The profiled steel sheeting had transverse ribs perpendicular to the steel beam. The material nonlinearities of concrete, headed stud, profiled steel sheeting, reinforcement and steel beam were included in the finite element model. The capacity of shear connection, load-slip behaviour of the headed stud, and failure modes were predicted. The results obtained from the finite element analysis were verified against experimental results. An extensive parametric study was conducted to study the effects on the capacity and behaviour of shear connection by changing the profiled steel sheeting geometries, the diameter and height of the headed stud, as well as the strength of concrete. The capacities of shear connection obtained from the finite element analysis were compared with the design strengths calculated using the American Specification, British Standard and European Code for headed stud shear connectors in composite slabs with profiled steel sheeting perpendicular to the steel beam. It is found that the design rules specified in the American and British specifications overestimated the capacity of shear connection, but the design rules specified in the European Code were generally conservative.  相似文献   

5.
An accurate nonlinear finite element model of the push-out specimen has been developed to investigate the capacity of large stud shear connectors embedded in a solid slab. The material nonlinearities of concrete, headed stud, steel beam and rebar were included in the finite element model. The damage and failure were included in the material model for the headed stud to accurately obtain the ultimate strength of the stud connector. The capacity and ductility of the connection, the load–slip behaviour and failure mode of the headed stud were predicted. The results obtained from the finite element analysis were verified against experimental results of other researches. An extensive parametric study was conducted to study the effect of the changes in stud diameter and concrete strength on the capacity and behaviour of the shear connection. The capacity and ductility of the shear connection obtained from the finite analysis were compared with those specified in EC4 and AASHTO LRFD. It is observed that the AASHTO LRFD specifications overestimated the capacity of the large stud shear connectors, whereas the design rules specified in Eurocode-4 were generally conservative for stud diameters of 22, 25 and 27 mm, and unconservative for diameter of 30 mm. The ductility of the large stud shear connectors is sufficient for practical application in composite bridges.  相似文献   

6.
This paper details the results and subsequent analysis of 27 push tests performed using a new push rig, which investigate the effect of variables such as mesh position, transverse spacing of shear connectors, number of shear connectors per trough and the slab depth on the resistance of headed stud shear connectors through-deck welded into a transverse deck.The analysis of these tests not only allowed characteristic resistances to be determined for the headed stud shear connectors in each case, but also enabled comparisons to be made to determine the effect of the different variables on the resistance. It found that within the limits tested the transverse spacing of the shear connectors has little effect on the resistance, and that including a third shear connector gives no benefit over using shear connectors in pairs. Locating the mesh at the top of the slab, as is common practice for crack control, gives sufficient ductility for design using the minimum shear connection rules in BS EN 1994-1-1, 6.6.1.2 (i.e. the characteristic slip capacity is greater than 6 mm, as required by BS EN 1994-1-1, 6.6.1.1(5)), but a strength enhancement of approximately 30% can be found by locating the mesh directly on top of the profiled steel sheeting. The results also indicated that the resistance increases with slab depth, but it is not clear if this is an effect of the push test or is a genuine effect of composite construction. Design rules based on these tests are proposed.  相似文献   

7.
In steel-concrete composite beams, the longitudinal shear force is transferred across the steel flange/concrete slab interface by the mechanical action of the shear connectors. The ability of the shear connectors to transfer these longitudinal shear forces depends on their strength, and also on the resistance of the concrete slab against longitudinal cracking induced by the high concentration of shear force. Most of the research in composite construction has concentrated on the more traditional reinforced concrete and metal deck construction, and little information is given on shear capacity of the headed studs in precast hollowcore slabs. In this paper, a standard push test procedure for use with composite beams with precast hollowcore slabs is proposed. Seven exploratory push tests were carried out on headed studs in solid RC slabs to validate the testing procedures, and the results showed that the new test is compatible with the results specified in the codes of practice for solid RC slabs. Once a standard procedure is established, 72 full-scale push tests on headed studs in hollowcore slabs were performed to determine the capacities of the headed stud connectors in precast hollowcore slabs and the results of the experimental study are analysed and findings on the effect of all the parameters on connectors’ strength and ductility are presented. Newly proposed design equations for calculating the shear connectors’ capacity for this form of composite construction are also be given.  相似文献   

8.
单调荷载下栓钉连接件受剪性能试验研究   总被引:3,自引:0,他引:3       下载免费PDF全文
栓钉是钢-混凝土组合梁中常用的柔性受剪连接件。通过18个栓钉受剪试件在单调荷载下的推出试验,较系统地研究了混凝土强度等级、栓钉直径以及钢梁类型等参数对栓钉的破坏形态、破坏机理、荷载-滑移规律和极限受剪承载力的影响。研究表明:栓钉的受剪承载力随着混凝土强度等级的提高以及栓钉直径的增大而增加;轧制工字钢试件中栓钉的受剪承载力比焊接工字钢试件中的高10%~30%。在试验的基础上提出了栓钉受剪承载力的计算方法。  相似文献   

9.
为给装配式钢-混组合结构梁桥集簇式栓钉抗剪连接件的设计提供参考,深入研究了集簇式栓钉抗剪连接件的受力特性。采用ABAQUS有限元软件建立推出试验有限元模型,对群钉效应及其主要影响因素进行了有限元参数化分析,并给出综合考虑混凝土强度、栓钉排数、栓钉纵向间距影响的集簇式栓钉连接件抗剪承载力折减系数计算公式。结果表明:受到群钉效应的影响,集簇式栓钉连接件的单钉平均抗剪承载力有较大程度的折减并且钉群受力呈现明显的不均匀性; 随着混凝土强度的提高,φ22×200栓钉连接件抗剪承载力、抗剪刚度逐渐增大; 当栓钉排数从3排增加至7排时,群钉的单钉平均抗剪承载力以及栓钉抗剪承载力折减系数逐渐降低,同时钉群受力的不均匀程度大幅提升; 当栓钉纵向间距由4d(d为栓钉直径)增加至8d时,群钉的单钉平均抗剪承载力以及栓钉抗剪承载力折减系数呈现增大趋势; 提出的集簇式栓钉连接件抗剪承载力折减系数计算公式计算值与有限元值吻合良好,可以为装配式钢-混组合结构梁桥集簇式栓钉抗剪连接件的设计提供理论依据。  相似文献   

10.
This study presents an experimental and numerical investigation on the static behavior of headed stud shear connectors in ultra-high performance concrete (UHPC) of composite bridges. Four push-out specimens were tested. It was found that no cracking, crushing or splitting was observed on the concrete slab, indicating that UHPC slab exhibited good performance and could resist the high force transferred from the headed studs. The numerical and experimental results indicated that the shear capacity is supposed to be composed of two parts stud shank shear contribution and concrete wedge block shear contribution. The stiffness increment of a stud in UHPC was at least 60% higher than that in normal strength concrete. Even if the stud height was reduced from 6d to 2d, there was no reduction in the shear strength of a stud. Short stud shear connectors with an aspect ratio as small as 2 could develop full strength in UHPC slabs. An empirical load-slip equation taking into account stud diameter was proposed to predict the load-slip response of a stud. The reliability and accuracy of the proposed load-slip equation was verified by the experimental and numerical load-slip curves.  相似文献   

11.
栓钉剪切连接件在SRHPC结构中的数值分析   总被引:1,自引:0,他引:1  
邓国专 《山西建筑》2009,35(15):5-6
探讨了型钢表面的栓钉与外包高强高性能混凝土之间的受力特性,基于既有的试验结果和理论计算,分析了栓钉的荷载—滑移曲线规律,研究了栓钉在三维有限元模拟中的影响因素,给出了三维受力状态下栓钉的刚度方程,建立了数值分析中每个方向的荷载—变形曲线。  相似文献   

12.
在钢-混凝土组合梁中,剪切连接件的机械作用使得纵向剪力转移到钢翼缘/混凝土板的接合处。这种转移能力取决于剪切连接件的强度和混凝土板抵抗由剪力高度集中所导致的纵向开裂的能力。大多数对组合结构的分析都集中在传统的钢筋混凝土和金属面板结构,而对预制空心板中栓钉的剪切能力研究很少。本文对带栓钉的预制空心板组合梁结构提出标准的推力试验方法。一共进行7组测试性试验,试验结果显示新方法符合钢筋混凝土楼板规范要求。在确定这个新的标准方法后,对栓钉进行了72个足尺推力试验,确定了该类型连接件的性能,通过分析试验结果,还指出了各类参数对连接件强度和延性的作用。本文还提出了这种剪力连接件的设计公式。  相似文献   

13.
In this study, a perfobond-rib shear connector between steel and concrete mixed girder bridge components is described. Push-out tests were conducted and the results were compared with established shear-capacity equations for perfobond shear connectors. Modified shear-capacity equations that consider the perfobond-rib arrangement, including rib height and spacing, are proposed. The test results were compared with studies of the concrete end-bearing zone, of transverse rebars in the rib holes, and of the shear-capacity equations of perfobond ribs. From the push-out tests, the shear capacity of the perfobond-rib shear connector varies in proportion to concrete strength, as indicated by the increase in the contribution to the shear resistance of the concrete. The ductility of the conductor is related to the flexibility limit of the transverse rebar in the rib hole. The shear capacity of a twin perfobond-rib shear connector was reduced to about 80% that of a single perfobond rib by reducing the shear capacity contributed by the concrete end-bearing zone, the concrete dowel, and the transverse rebar in the rib hole. The perfobond rib can be used as a shear connector in composite or mixed structures since it has sufficient ductility as well as high shear capacity.  相似文献   

14.
Over the last decade, there are many research results on the new type shear connectors to solve the problems associated with the headed stud shear connector. It was revealed that the new type shear connector has better structural safety, welding quality, constructability, cost-effectiveness, etc. Especially, perforated shear connector (perfobond shear connector) which has superior fatigue resistance and constructability is receiving attention among various types of shear connectors. In this study, we suggest the new type shear connector which improved the perfobond shear connector. Newly suggested hat shaped shear connector can be used instead of headed stud shear connector commonly used in the concrete-steel composite beam. To evaluate the load carrying capacity of this hat shaped shear connector, push-out tests are carried out and test results are analyzed. In addition, the finite element analysis is conducted on the concrete slab having shear connector to investigate the stress distribution pattern affected by the presence of hat shaped shear connector. The existing design equations for the perfobond shear connectors are reviewed briefly and the equation for the prediction of load carrying capacity of new type hat shaped shear connector is suggested based on the experimental results, finite element analysis results, and existing equations suggested in the previous studies.  相似文献   

15.
In steel-concrete composite beams, the shear connectors are commonly used to transfer the longitudinal shear forces across the steel-concrete interface. This paper summarizes the results of 24 push-out test specimens with a new type of shear connector called “I-shape connector”. The test specimens were designed to study the effect of the following parameters on the ultimate load capacity: the height of I-shape connector, the length of I-shape connector, the compressive strength of concrete and the number of transverse reinforcing bars. The experimental results are presented and discussed, focusing on the failure modes and load-slip behaviour. Finally, the experimental results are compared to the existing design equations to predict the ultimate load capacity of I-shape shear connectors.  相似文献   

16.
探讨了有限元方法在钢—混凝土组合结构中的应用,从剪力钉刚度的得出和剪力钉的有限元计算模型两方面对剪力钉模型的建立进行了研究,得出了剪力钉计算模型只适用于混合梁结合部位的结论。  相似文献   

17.
Prefabrication of concrete slabs reduces construction time for composite steel–concrete buildings and bridges. Different alternatives for shear connectors (bolts and headed studs) are analysed here to gain better insight in failure modes of shear connector in order to improve competiveness of prefabricated composite structures. Casting of high strength bolted shear connectors in prefabricated concrete slabs offers the higher level of prefabrication comparing to a standard method of grouting welded headed studs in envisaged pockets of concrete slabs. In addition, bolted shear connectors can easily be dismantled together with the concrete slab thus allowing the improved sustainability of the construction, simpler maintenance, and development of modular structural systems. Bolted shear connectors have been rarely used in construction, actually just for rehabilitation works, because there is a lack of design recommendation. The first step towards the design recommendation is to understand the difference between the headed shear studs and the bolted shear connectors in a push-out test. Push-out tests, according to EN1994-1-1, using 4 M16 — grade 8.8 bolts with embedded nut in the same layout and test set-up as for previously investigated headed studs were performed. Finite element models for both shear connectors were created, and good match with experimental data was obtained. Basic shear connector properties such as: shear resistance, stiffness, ductility and failure modes have been compared and discussed in detail by using experimental and FE results. Parametric FE analyses of shear connector's height are carried out and shear resistance reduction factor has been proposed for bolted shear connectors.  相似文献   

18.
New investigations on the fatigue behavior of composite beams made of high strength materials with two different kinds of shear connection. Scope of the research project [1] was the investigation of the fatigue behaviour of different shear connectors (headed studs ∅︁ 22 mm and puzzle‐strip) together with high strength materials (steel S 460 and concrete C 80/95). For both types of shear connectors cyclic push‐out‐tests as well as large scale experiments with composite beams under cyclic loading have been carried out. The headed studs failed after a mean lifetime of 2,3 million cycles, the residual strength after 1 million cycles was reduced by about 25% compared to the static push‐out strength. In the puzzle‐strip cracks were visible, however, the residual strength was not reduced at all. Further, the push‐out tests with headed studs show a slight improvement of the fatigue behaviour using high strongth concrete (HSC). The cyclic beam tests show that the prediction of the fatigue according to EC 4 – as for specimens with normal strength materials – is not satisfactory. A good prediction of the crack propagation (and fatigue) can rather be achieved by using a crack‐slip‐relationship [6]. Also for shear joints with continuous puzzle‐strips a threshold value can be determined by fracture mechanics to which no further crack propagation (theoretically) occurs. However, this depends on the state of the cutting‐induced heat treatment of the surface material and on the surface roughness.  相似文献   

19.
Plate-reinforced composite (PRC) coupling beam is fabricated by embedding a vertical steel plate into a conventional-reinforced concrete coupling beam to enhance its strength and ductility. Shear studs are welded on the steel plate surfaces to allow for proper load transfer between the concrete and steel plate. The present study focuses on the evaluation of internal load distributions and load sharing on the embedded steel plate as well as at the shear studs in composite coupling beams using the nonlinear finite element package ATENA. The proposed two-dimensional finite element model is able to simulate the overall load-deflection behaviour and internal load distributions of coupling beams subjected to bending and shear forces. The reliability of the model is demonstrated by comparisons with the available experimental results. This is followed by an extensive and carefully planned parametric study using the calibrated finite element model. Numerical results on the effects of steel plate geometry, span-depth ratio of beams and steel reinforcement ratios at beam spans and in wall regions are presented and discussed in this paper. The finite element model provides a better understanding of the behaviour of shear studs as well as plate anchorage in the wall regions and embedded beam region. Based on the numerical results, equations for quantifying the shear stud forces are established and a set of non-dimensional design charts for determining the internal forces of the embedded steel plates is constructed. Both of them are useful for engineers to design PRC coupling beams.  相似文献   

20.
高温下钢筋桁架楼承板中栓钉抗剪性能研究   总被引:2,自引:0,他引:2  
对15个试件进行常温和高温下推出试验,研究钢筋桁架楼承板中栓钉的抗剪性能,得到混凝土楼板和栓钉不同位置处的温度分布以及栓钉受剪承载力随温度的退化规律。试验结果表明,钢筋桁架楼承板中栓钉在常温和高温下的破坏均为栓钉剪断破坏,栓钉根部混凝土局部压碎,但是与平板混凝土板中栓钉的破坏位置不同,所研究的栓钉剪断破坏的位置在钢梁上翼缘处,而不是在栓钉根部焊缝处,这也在很大程度上导致了钢筋桁架楼承板中栓钉受剪承载力比平板混凝土板中栓钉低。钢筋桁架楼承板中栓钉的受剪承载力和刚度均随温度的升高而降低。通过对试验数据的分析,提出了钢筋桁架楼承板中栓钉高温下受剪承载力和荷载-滑移曲线的计算方法。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号