首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 190 毫秒
1.
通过将氧化石墨烯(GO)分散液和壳聚糖(CS)酸溶液进行复合制备得到一种氧化石墨烯-壳聚糖复合吸附剂,研究了溶液pH、吸附时间、吸附剂用量、含铜废水初始浓度对废水中Cu~(~(2+))的吸附性能的影响,确定了复合吸附剂对Cu~(~(2+))的最佳吸附条件。结果表明,复合材料在溶液pH=5.0,吸附时间(振荡)80min,吸附剂用量25g,含铜废水初始质量浓度10mg/L时,复合吸附剂对Cu~(~(2+))的吸附效果最佳,去除率为87.5%,对低浓度含铜废水有较好的处理效果。  相似文献   

2.
采用壳聚糖颗粒为固化介质,将单宁和壳聚糖以共价方式结合,制备了壳聚糖固化单宁颗粒吸附剂。采用红外光谱对所得吸附剂进行表征,并研究了各种操作条件,如溶液的pH值、溶液Cu~(2+)离子浓度、吸附时间等对吸附性能的影响。结果表明,升高溶液的pH值(实验中pH不大于7)和Cu~(2+)离子浓度会提高吸附剂的吸附量;吸附剂对Cu~(2+)离子有较快的吸附速度,60 min可达到吸附平衡;溶液中共存的Na~+离子会降低吸附剂对Cu~(2+)离子的吸附能力;对Cu~(2+)离子的吸附规律符合Langmuir吸附等温模型,最大吸附量达到75.23 mg·g~(-1)。  相似文献   

3.
基于壳聚糖对金属离子的螯合机理,同时采用离子印迹法和共混法改性壳聚糖膜,制备了Cu~(2+)印迹壳聚糖/聚乙烯醇膜(CS(Cu~(2+))/PVA),并研究了其对Cu~(2+)的吸附性能。利用SEM、 FT-IR对其进行表征,并探讨了各因素对吸附效果的影响,结果表明:当PVA添加量为7.5%, Cu~(~(2+))初始浓度为100 mg·L-1,吸附剂添加量为0.01 g, pH=5.00时, CS(Cu~(2+))/PVA对Cu~(2+)的吸附量最大,为182.1 mg·g-1,是壳聚糖膜(CS)吸附量的1.9倍。吸附在90 min内达到平衡,吸附等温线既符合Langmuir模型,也符合Freundlich模型。吸附动力学符合拟二阶动力学模型。3次循环使用后,吸附量仍可达到102.7 mg·g~(-1)。在有Pb~(2+)存在的混合溶液中,其对Cu~(2+)的吸附量为150.39 mg·g-1,是对Pb~(2+)吸附量(22.14 mg·g-1)的7倍,表现出优异的吸附选择性。  相似文献   

4.
采用表面引发接枝聚合法制备凹凸棒土接枝聚丙烯酰胺杂化粒子(ATP-g-PAAm),以此改性聚乙烯醇/壳聚糖复合膜(PVA/CS)。采用傅里叶红外光谱(FTIR)、差示扫描量热(DSC)、热失重分析(TG)等对三元复合膜(PVA/CS/ATP-g-PAAm)进行了表征,考察了杂化粒子含量对复合膜力学性能、热性能、吸湿率和吸附性能的影响。结果表明,ATP-g-PAAm的加入提高了复合膜的力学性能、结晶度和热稳定性,且能显著提升复合膜对Cu~(2+)的吸附能力。当杂化粒子质量分数为4%时,复合膜的拉伸强度、弹性模量和断裂伸长率分别为62.4 MPa、184.5 MPa和141.3%,对Cu~(2+)的吸附量高达156.5 mg/g。  相似文献   

5.
以氧化石墨烯(GO)、FeCl_3·6H_2O及聚(4-苯乙烯磺酸-共聚-马来酸)钠盐(PSSMA)为主要原料,通过简便一步溶剂热法制备了阴离子聚电解质修饰磁性氧化石墨烯(MGO@PSSMA),并将其用于水溶液中重金属Pb~(2+)、Cu~(2+)的吸附去除。采用FTIR、SEM、TEM、VSM和DLS对制备的MGO@PSSMA进行了表征。考察了溶液pH、吸附时间、溶液初始质量浓度对Pb~(2+)、Cu~(2+)在MGO@PSSMA及未经PSSMA修饰磁性氧化石墨烯(MGO)上吸附的影响。探讨了吸附等温过程、吸附动力学及吸附作用机理。结果表明:MGO表面引入PSSMA可有效增加其对Pb~(2+)、Cu~(2+)的吸附量。在pH=5,溶液初始质量浓度为300 mg/L时,MGO@PSSMA对Pb~(2+)和Cu~(2+)的实际吸附量达141.1和104.8 mg/g。当溶液初始质量浓度为150 mg/L时,MGO@PSSMA对Pb~(2+)和Cu~(2+)的吸附平衡时间分别为2和1.5 min。MGO@PSSMA对Pb~(2+)、Cu~(2+)的吸附动力学及吸附等温数据分别符合准二级吸附动力学模型和Langmuir吸附等温模型。使用乙二胺四乙酸(EDTA)和HCl可实现MGO@PSSMA的有效再生;通过外加磁场作用可实现MGO@PSSMA的回收再利用。  相似文献   

6.
以丙烯酸(AA)和壳聚糖(CS)为原料,N,N'-亚甲基双丙烯酰胺(MBA)为交联剂,利用辉光放电电解等离子体(GDEP)技术在水溶液中一步引发制备了壳聚糖/聚丙烯酸(CS/PAA)水凝胶。采用FTIR、XRD和SEM对水凝胶的结构和形貌进行了表征,考察了溶液p H、吸附时间和初始质量浓度对Cu~(2+)和Cd~(2+)吸附的影响,探讨了水凝胶的重复利用性。结果表明:AA成功接枝到了CS链上,形成了具有多孔三维网络结构的CS/PAA水凝胶;该水凝胶对Cu~(2+)和Cd~(2+)的吸附符合准二级动力学模型和Langmuir吸附等温式;在最佳吸附p H下(p H=4.3),吸附120 min,CS/PAA水凝胶对Cu~(2+)和Cd~(2+)的最大实际吸附量分别为151.2和298.8 mg/g;该水凝胶在0.015mol/L乙二胺四乙酸四钠(EDTA-4Na)溶液中吸附解吸4次后,吸附量变化不大,说明CS/PAA水凝胶具有优异的再生和重复利用性。  相似文献   

7.
氧化石墨烯(GO)经1,6-六亚甲基二异氰酸酯(HDI)、树枝状大分子聚酰胺-胺(PAMAM)化学接枝改性后,制得吸附材料功能化石墨烯(FGO)。考察了离子浓度、溶液pH值、吸附时间、吸附材料用量对FGO吸附重金属离子的影响。研究结果表明,FGO对Cu~(2+)吸附量最大,增加离子浓度有利于重金属离子吸附量的提高。吸附时间在5 min以上,重金属离子吸附量变化不大。吸附材料用量增加反而降低单位质量FGO的吸附量。重金属离子吸附量在p H值为4.5~6.5范围内最佳。  相似文献   

8.
以氧化石墨烯(GO)和壳聚糖(CS)为原料,采用一步水热法制备了氧化石墨烯/壳聚糖复合气凝胶(GO/CS)。分别研究了制备方法和原料比例对其吸附甲基橙(MO)的影响。结果表明:水热法制得的气凝胶为三维网状结构,且水热法制备的氧化石墨烯/壳聚糖复合气凝胶(GO/CS)较溶胶-凝胶法具有更好的吸附性能,当GO与CS的质量比为10:1时,复合气凝胶对甲基橙去除率最高。  相似文献   

9.
采用改进Hummers法制备了氧化石墨烯(GO)。以海藻酸钠(SA)为载体,采用溶液共混法制备氧化石墨烯/海藻酸钠(GO/SA)凝胶球。以GO/SA凝胶球作为吸附材料,对含镍废水进行吸附性能研究。实验结果表明:以质量浓度为7%Ca Cl2为交联剂,m(GO)∶m(SA)为1∶9,Ni~(2+)质量浓度为80g/L,GO/SA凝胶球投加量为40g/L,吸附温度为30℃,Ni~(2+)吸附率为17.15%。含镍废水p H值大于6时,出现大量白色沉淀,pH值对含镍废水中Ni~(2+)吸附率有显著影响。  相似文献   

10.
利用分子印迹技术,以壳聚糖(CS)为功能单体,Cu~(2+)为印迹离子,通过稀氨水固化、环氧氯丙烷交联、盐酸洗脱Cu~(2+),制得了Cu~(2+)印迹交联壳聚糖微球(Cu~(2+)-ICM)。采用FTIR、XRD和FESEM对产品进行了表征,并测定了微球的骨架密度、含水量和交联度。结果表明:交联改性可使微球具有多孔结构和良好的结构稳定性,能够很好地降低CS的酸溶性,提高微球对Cu~(2+)的吸附性能。通过正交实验L_9(3~4)得到Cu~(2+)-ICM的最优制备条件为:CS 1.5 g,环氧氯丙烷2.5 mL,80℃下交联3.0 h,制得的微球对Cu~(2+)吸附量为67.80 mg/g。在单组分体系中考察了微球对Cu~(2+)的吸附性能。结果表明:当微球投加量为50 mg,Cu~(2+)初始质量浓度为338.7 mg/L,pH=5.0时,吸附量为72.80 mg/g。  相似文献   

11.
采用单因素试验结合Box-Behnken响应面法,以吸附容量为指标,考察壳聚糖(CS)、聚乙二醇(PEG)、β-环糊精(β-CD)、乙烯基三乙氧基硅烷(JH-V151)等因素对制备的CS/PEG/β-CD复合膜处理含铜废水性能的影响。确定CS/PEG/β-CD复合膜的最佳制备条件:m(PEG)∶m(CS)=3∶7,m(β-CD)∶m(CS)=1∶5,JH-V151无水乙醇溶液体积分数为9%。在pH为6、实验温度为55℃、实验时间为3 h时,膜对Cu~(2+)的最大吸附量为49.20 mg/g,去除率达到98.40%,吸附过程可以较好地用伪二级动力学模型描述,数据可应用Langmuir等温模型拟合,膜对Cu~(2+)的理论饱和吸附量为140.06 mg/g。  相似文献   

12.
为了提高氧化石墨烯(GO)的吸附能力和分离效果,采用恒温搅拌法和水热法制备磁性三乙烯四胺氧化石墨烯(M-T-GO)复合吸附剂。通过X射线衍射(XRD)、傅里叶红外光谱(FT-IR)和透射电镜(TEM)测试方法对其进行表征,并对M-T-GO对Cu~(2+)的p H、吸附动力学、吸附等温线和吸附热力学进行研究。结果表明,M-T-GO对Cu~(2+)的吸附符合二级反应动力学和Langmuir吸附等温式描述,吸附反应为自发吸热过程,饱和吸附量为245.09 mg·g-1,同时具有快速分离和易再生的优点。采用X射线光电子能谱(XPS)推测M-T-GO对Cu~(2+)的吸附机理,结果表明M-T-GO主要通过螯合作用和静电引力对Cu~(2+)进行吸附。  相似文献   

13.
将壳聚糖与活性炭复配,并进行交联和接枝改性,制得复配壳聚糖吸附剂,并用于动态吸附废水中的Cu~(2+),通过穿透曲线考察了主要操作条件对吸附性能的影响。结果表明,增大溶液初始浓度及溶液流量,吸附剂的穿透吸附量增加,穿透时间减少,穿透曲线前移;增加吸附剂填充量,穿透吸附量及穿透时间增加,穿透曲线更加平缓。采用Thomas模型对实验数据进行拟合分析,结果表明,复配壳聚糖对Cu~(2+)的动态吸附行为符合Thomas模型。  相似文献   

14.
以自制SiO_2为基底材料,用甲醇钠活化SiO_2表面羟基基团,在CS2、镁盐体系中合成了接枝-CSS-基团的改性SiO_2,研究对Cu~(2+)的吸附性能。结果表明,改性后的SiO_2在红外谱图在1 525 cm-1处显示有C-S的变形振动,热失量分析改性后的SiO_2总质量损失比未改性的多4个百分点,DTG曲线在450℃多了1个羟基接枝改性的放热峰,且扫描电镜图像显示改性SiO_2的分散性较好。优化的吸附条件为溶液温度55℃、溶液p H为7、吸附平衡时间为45 min、吸附溶液的Cu~(2+)初始质量浓度为50 mg/L,在此条件下,改性SiO_2对Cu~(2+)吸附容量为99.05 mg/g。改性SiO_2对Cu~(2+)的吸附行为符合Langmuir等温方程,吸附过程符合准2级动力学方程。  相似文献   

15.
以氧化石墨烯(GO)为前驱体,采用溶剂热法制备了磁性石墨烯泡沫(MGF)复合物(Fe3O4/GF)。用X射线衍射(XRD)、透射电镜(TEM)及场发射扫描电子显微镜(FESEM)、傅里叶红外光谱(FTIR)及振动样品磁强计(VSM)对其进行了表征。测定了不同Cu~(2+)初始质量浓度、反应时间和温度下复合物对水溶液中Cu~(2+)的吸附性能。结果表明:Fe_3O_4成功复合到了石墨烯上且为三维泡沫结构;复合物对Cu~(2+)吸附量可达49.20 mg/g;吸附过程符合准二级动力学模型。磁性复合物可以借助外部磁场实现快速磁分离。  相似文献   

16.
以煤气化灰渣为原料,采用酸改性法(HF酸)制备改性煤气化灰渣。通过静态实验研究了改性煤气化灰渣对溶液中Pb~(2+)、Cu~(2+)、Cd~(2+)的吸附特性,测定了溶液pH值、吸附时间、金属离子初始浓度对吸附的影响。结果表明,二级动力学方程很好的描述溶液中重金属离子在改性煤气化灰渣上的吸附过程;吸附等温线符合Langmuir模型,Pb~(2+)、Cu~(2+)、Cd~(2+)的静态饱和吸附量分别为112.07,40.18,31.21 mg/g。  相似文献   

17.
以净水厂铝污泥(AlS)为主要原料,依次经过铁盐浸渍和壳聚糖(CS)包覆,制得复合吸附剂AlS-Fe-CS,研究其对Cu~(2+)的吸附。结果表明,化学改性后,铁(氢)氧化物和CS复合在铝污泥上;最优吸附pH为5.5,吸附平衡时间为20 h,对Cu~(2+)的最大吸附量为72.36 mg/g,相比纯AlS性能提高了约1倍,且温度升高有利于吸附反应的进行;吸附过程符合拟二级动力学和Freundlich吸附等温线。  相似文献   

18.
综述了石墨烯和氧化石墨烯的理化性质和发展前景,从吸附重金属离子和有机染料的角度出发,概述了氧化石墨烯及其复合材料对Cu~(2+)、Pb~(2+)和MB的吸附效果及对金属离子和有机染料的吸附机理。最后针对全文研究进展做了总结同时对未来高效吸附剂的开发做了展望。  相似文献   

19.
采用壳聚糖改性活性炭纤维毡处理含铜模拟废水,考察了其对Cu~(2+)的去除效果及电化学再生效果。吸附试验结果表明,当pH=3,温度为30℃,Cu~(2+)初始质量浓度为100 mg/L,吸附时间为8 h时,出水Cu~(2+)﹤0.5 mg/L,达到《污水综合排放标准》(GB 8978—1996)一级排放标准要求。电化学再生试验结果表明,在优化条件下,经再生的壳聚糖改性活性炭纤维毡对Cu~(2+)的去除率达72.39%。  相似文献   

20.
《合成纤维工业》2017,(6):28-32
采用两步法将聚乙烯亚胺(PEI)接枝到聚丙烯腈(PAN)纤维上制备胺基螯合纤维即PEI-PAN纤维,研究了该纤维对水中Cu~(2+)的吸附性能,并对纤维的力学性能、元素组成和表面形貌进行了表征。结果表明:胺基化反应的接枝率和反应程度分别为8.72%和10.0%;纤维的力学性能在水解后下降,而在胺基化后会提升;在p H值为4~5、Cu~(2+)浓度为0~400 mg/L时,Langmuir方程可以较好地描述PEI-PAN纤维对Cu~(2+)的吸附过程,饱和吸附量为327.7 mg/g;Cu~(2+)浓度为5.0 mg/L(工业废水超标10倍)和3.0 mg/L(生活饮用水超标3倍)时,PEI-PAN纤维对的吸附量分别为74.4 mg/g和48.8 mg/g;准二级动力学方程可以较好地拟合PEI-PAN纤维对Cu~(2+)的吸附速率曲线,半饱和吸附时间为190 s;使用1.5 mol/L HCl溶液洗脱、1.0 mol/L氨水再生,再生18次后PEI-PAN纤维对Cu~(2+)的吸附量为初始吸附量的97.5%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号