首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 31 毫秒
1.
固体火箭冲压发动机补燃室流场计算方法研究进展   总被引:1,自引:1,他引:0  
自七十年代以来人们使用实验和CFD手段对固体火箭冲压发动机补燃室流场进行了不断的分析研究。本文简要介绍了实验概况和数值模拟所用的物理模型和计算方法,最后提及新近发展的耦合解法-块隐式法。  相似文献   

2.
文中采用标准κ-ε双方程湍流模型数值模拟一种环向进气的固体火箭冲压发动机补燃室的掺混燃烧过程.考虑了补燃室的出口反压、空燃比和燃气喷射角度等设计参数对燃烧流场的影响.结果表明:增大出口反压和空燃比.有利于补燃室内掺混和燃烧的进行;增大燃气喷射角度.补燃室头部温度升高,燃料停留时间增大,对燃烧流场特性影响不大。  相似文献   

3.
凹腔常用来增强超燃冲压发动机中空气与燃气掺混、提升火焰稳定性及燃烧效率,然而超音速燃烧室内的燃气流场特性依赖于凹腔结构及其分布。为优化凹腔结构及其分布,提升固体火箭超燃冲压发动机补燃室内的燃烧性能,采用数值方法计算分析凹腔长深比、后倾斜角对含硼固体火箭超燃冲压发动机燃烧特性的影响。计算结果表明:在凹腔长度不变时,取凹腔长深比分别为5.00、3.75、3.00、2.50、2.18、1.85、1.67,硼颗粒燃烧效率与比冲随着长深比减小先增大、后减小,在长深比为1.85时最大;当凹腔长深比为1.85、凹腔后倾角从90°变化到175°时,随着凹腔后倾角增加,硼颗粒燃烧效率增加,175°时燃烧效率最大,但其总压恢复系数及比冲最小,比冲在165°时最高。  相似文献   

4.
含硼贫氧推进剂固体火箭冲压发动机的性能预示是在热力计算基础上进行的,其热力计算就是贫氧推进剂在给定一、二次燃烧条件下的热力计算。本文简要介绍了贫氧推进剂非化学平衡体系热力计算的原理,分别对壅塞式和非壅塞式固体火箭冲压发动机进行了不同情况的热力计算。结果说明:用能量高的含硼推进剂,固体火箭冲压发动机的比冲显著提高。燃气流量不可调的壅塞式固体火箭冲压发动机的性能随工作高度和飞行马赫数的变化会有较大的变化,非壅塞式固体火箭冲压发动机的变化较小。  相似文献   

5.
为给固体火箭冲压组合发动机补燃室的进气道设计提供参考,研究了空气两次进气对补燃室燃烧效率和内壁烧蚀环境的影响。采用标准k-ε(k为湍流动能,ε为耗散率)模型、涡耗散模型和King硼颗粒点火模型,分别对空气一次进气和两次进气两种补燃室的多相流燃烧进行数值模拟,并进行对比分析。研究结果表明:两次进气可包覆混合燃气,并将其向内挤压,压缩高温区域,改变氧气分布,从而减小高温内壁面积,降低低温壁面温度,减少贴近壁面的凝聚相颗粒数量,从而减弱对壁面的热烧蚀、氧化和凝聚相颗粒侵蚀作用,同时,因造成的动能损失更大,减小了贴近内壁的气流速度,可减弱气流冲刷作用,二者共同作用,较大程度改善补燃室内壁的烧蚀环境;两次进气对补燃室的燃烧效率影响不大,一次进气和两次进气补燃室的总燃烧效率分别为80.68%和80.18%;综合燃烧效率和内壁烧蚀环境两方面,表明两次进气形式优于一次进气形式。  相似文献   

6.
在火箭冲压发动机的吸气燃烧室内,硼粒子燃烧所产生的试验性研究问题现试图通过改进喷射装置和燃烧室设计加以解决。在这项研究过程中,硼粒子是由装填有含硼量较高的固体燃料的单独燃气发生器进行喷射。最高的燃烧效率是靠采用撞击式喷流喷射装置上加可移动的空气进口而获得,这种空气进口证明了在火箭冲压发动机内使用高硼量固体燃料的可能性。  相似文献   

7.
固体火箭超燃冲压发动机性能数值模拟研究   总被引:3,自引:0,他引:3  
针对固体火箭超燃冲压发动机,设计了多级小角度扩张的超燃冲压发动机燃烧室结构,采用凹腔和扰流装置两种混合增强及火焰稳定方式,通过包含简化动力学的数值模拟方法,研究了不同构型燃烧室掺混燃烧性能。结果表明,燃烧室扩张角度对燃烧效率的提高有影响,但作用效果有限;凹腔结构虽然促进了燃烧反应的进行,有利于提高燃烧效率,同时也带来了较大的内部阻力;扰流装置较大的提高了一次燃气与来流空气间的掺混度,对于燃烧效率的提高意义明显。  相似文献   

8.
通过对双下侧进气布局的固体火箭冲压发动机进气道进气交汇位置变化的各状态进行三维燃烧数值仿真,研究固定一次燃气时进气交汇位置对固体火箭冲压发动机性能的影响.仿真结果表明,进气交汇点从远离进气道一侧向靠近进气道变化时,固体火箭冲压发动机补燃室掺混燃烧程度将随之改变,导致补燃室出口温度场的畸变度先降低、后增加、再降低,当交汇...  相似文献   

9.
采用CFD数值仿真研究固体火箭冲压发动机补燃室长度对其燃烧和流动的影响。仿真结果表明,补燃室中的损失主要是掺混损失和流动损失,当补燃室长径比较小(l/d<11.0)的时候掺混燃烧损失较大,补燃室出口温度均匀度较低,整个发动机性能不高。随着补燃室长度增大掺混燃烧逐渐均匀整个发动机性能达到最大,随着补燃室长度进一步增加,流动损失增大,发动机性能有所下降。同时增加补燃室长度可以得到均匀的补燃室出口流场,进而使发动机喷管的损失有所降低。  相似文献   

10.
固体火箭冲压发动机补燃室内硼颗粒点火计算研究   总被引:6,自引:3,他引:3  
采用King硼颗粒点火模型,研究固体火箭冲压发动机补燃室内温度、压强、氧气摩尔浓度、硼颗粒初始半径对硼颗粒点火的影响。计算结果表明:当颗粒初始条件确定后,存在一个颗粒点火所需的最低环境温度;当氧气摩尔分数比较低时,增加环境总压,颗粒点火时问增加;当氧气摩尔分数比较高时,增加环境总压,颗粒点火时间反而减少;增大颗粒半径后,颗粒点火时间也增加;当环境温度升高时,颗粒点火时间显著减少。  相似文献   

11.
过载条件下固体火箭发动机燃烧稳定性分析   总被引:2,自引:0,他引:2  
为了研究过载对固体火箭发动机燃烧稳定性的影响,对Φ315发动机开展了数值计算和过载试验.通过对发动机进行三维两相流场模拟,分析了过载和无过载两种条件下发动机燃烧室内的流场和颗粒浓度分布特性;利用不稳定燃烧线性理论计算了两种条件下的增长系数,并根据线性稳定性判据评估了发动机的燃烧稳定性,与试验结果吻合.分析认为:过载引起的颗粒浓度分布变化是发生不稳定燃烧的关键因素.  相似文献   

12.
文中针对某型固体火箭发动机低温地面试车时出现的燃烧不稳定现象进行了研究.通过对试车数据进行FFT分析基本确认该燃烧不稳定现象属于声不稳定.结合对燃烧不稳定抑制措施的讨论和相关工程经验,针对性地采取调整弹道稳定剂含量和粒径,并适当提高二级工作压强等措施后,再次进行低温地面试车.试车结果表明燃烧不稳定现象基本消除,说明采取的措施有效,可为同类型固体火箭发动机工程研制提供借鉴.  相似文献   

13.
固体推进剂用非铅燃速催化剂研究最新进展   总被引:6,自引:1,他引:6  
宋秀铎  赵凤起  陈沛 《含能材料》2004,12(3):184-188
主要介绍铋化合物催化剂、含能非铅催化剂、碳纤维催化剂和氟化锂催化剂在固体推进剂中应用的研究进展。  相似文献   

14.
Study on Instable Combustion of Solid Rocket Motor with Finocyl Grain   总被引:3,自引:0,他引:3  
The instable combustion or oscillation combustion which occurs in three high capacity solid rocket motors using high energy composite propellant with finocyl grain is studied. The reasons of the acoustic combustion instability are also discussed. Three engineering methods that can eliminate combustion instability are proposed and discussed. The study shows that the combustion instability mainly depends on the propellant grain shape and nozzle structure. Some measures to reduce the acoustic energy and mass generation rate of combustion gas can be adopted. The test results indicate that the modified rocket motors can significantly eliminate the instable combustion and improve the motor internal ballistic performance.  相似文献   

15.
介绍了亚历山大效应测温原理,通过数值仿真研究了发动机尺寸与热损失对燃烧室轴心温度的影响,组建了基于亚历山大效应的火箭发动机燃气温度测量系统。测量了铝含量为1%,9%,17%的复合推进剂在0.1 MPa下燃气温度、发动机工作压强为5 MPa时燃烧室内燃气温度和喷管出口处燃气温度。结果表明:发动机直径与热损失对燃烧室轴心温度的影响可忽略;基于亚历山大效应测温法在室压下测得燃气温度分别为2857,3109,3284 K,理论计算燃气温度分别为2712,2891,3049 K,即随着铝含量的增加,实测燃气温度和理论燃气温度都增加;测得发动机喷管出口燃气温度为2200 K,与理论计算的2278 K较吻合;透明玻璃窗在发动机工作过程中受到燃气污染,导致测得的燃烧室气体温度分别为2300 K和2450 K,低于理论计算的3190 K和3450 K,必须进一步改进高温测量系统,使之能精确测量火箭发动机燃气温度。  相似文献   

16.
补燃室头部距离是影响固体火箭冲压发动机二次燃烧效率的关键参数,采用数值模拟的方法研究分析了该参数对固体火箭冲压发动机二次燃烧效率的影响,数值结果与同等条件下实验结果的对比分析表明:补燃室头部距离的增大,可增大头部的漩涡区,从而使固相颗粒在补燃室头部的驻留时间得以延长,这对固相颗粒的点火燃烧十分有利,但对提高整个补燃室掺混燃烧效率的作用有限,因此补燃室长度一定的情况下,存在一个最佳的头部距离。  相似文献   

17.
王晗  赵凤起  高红旭 《含能材料》2005,13(5):344-348
综述了固体推进剂用纳米燃烧催化剂制备方法的最新研究进展,讨论固相反应法、电解法、水热法、沉淀法、溶胶-凝胶法、微乳液法制备纳米粒子的优缺点,指出了固体推进剂用纳米催化剂制备研究中存在的问题,今后纳米燃烧催化剂制备方法发展的方向及研究重点: (1) 发展和完善现有制备工艺,寻求适合工业化生产的高效、廉价制备途径;(2) 深入地研究纳米结构和性质以及制备机理;(3) 纳米催化剂表面改性和修饰技术研究;(4) 推进剂用绿色纳米有机催化剂、含能纳米有机催化剂,以及由一些新型碳材料比如碳纳米管、C60等制备的复合纳米催化剂.  相似文献   

18.
无喷管固体火箭发动机内弹道计算   总被引:3,自引:0,他引:3  
给出了一种无喷管固体火箭发动机内弹道计算方法,利用此算法就无喷管固体火箭发动机结构和装药等参数对性能的影响状况进行了分析,并得出结论:装药形式、结构尺寸、固体推进剂的燃烧规律与试验温度都对无喷管固体火箭发动机内弹道性能有影响。  相似文献   

19.
叶青  余永刚 《兵工学报》2020,41(10):1970-1978
为研究星型装药的固体火箭发动机的热安全性问题,针对装填高氯酸铵/端羟基聚丁二烯(AP/HTPB)推进剂的火箭发动机开展烤燃数值研究。采用两步总包反应描述AP/HTPB的烤燃过程,建立三维烤燃模型对快速、中速和慢速加热速率下火箭发动机的烤燃行为进行数值预测。结果表明:升温速率对着火温度和着火延迟期有一定影响,对着火区域的中心位置、形状和大小有较大影响:在升温速率0.55~1.45 K/s快速烤燃工况下,着火位置紧邻推进剂右侧端面;在升温速率0.005~0.011 K/s中速烤燃工况下,着火区域均呈不连续点状圆环分布,着火点位于翼槽中线上;在升温速率2.4~3.3 K/h慢速烤燃工况下,着火点以翼槽中线呈对称两点分布;随着升温速率升高,着火位置向推进剂右侧端面移动;着火温度Ti与升温速率k呈二次函数关系,即Ti= 516.659 36- 1.267 8k+7.479 4k2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号