首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Yolk/shell nanoparticles (NPs), which integrate functional cores (likes Fe3O4) and an inert SiO2 shell, are very important for applications in fields such as biomedicine and catalysis. An acidic medium is an excellent etchant to achieve hollow SiO2 but harmful to most functional cores. Reported here is a method for preparing sub-100 nm yolk/shell Fe3O4@SiO2 NPs by a mild acidic etching strategy. Our results demonstrate that establishment of a dissolution–diffusion equilibrium of silica is essential for achieving yolk/shell Fe3O4@SiO2 NPs. A uniform increase in the silica compactness from the inside to the outside and an appropriate pH value of the etchant are the main factors controlling the thickness and cavity of the SiO2 shell. Under our “standard etching code”, the acid-sensitive Fe3O4 core can be perfectly preserved and the SiO2 shell can be selectively etched away. The mechanism of regulation of SiO2 etching and acidic etching was investigated.
  相似文献   

2.
A sol-gel process has been developed to incorporate bionanoparticles, such as turnip yellow mosaic virus, cowpea mosaic virus, tobacco mosaic virus, and ferritin into silica, while maintaining the integrity and morphology of the particles. The structures of the resulting materials were characterized by transmission electron microscopy, small angle X-ray scattering, and N2 adsorption-desorption analysis. The results show that the shape and surface morphology of the bionanoparticles are largely preserved after being embedded into silica. After removal of the bionanoparticles by calcination, mesoporous silica with monodisperse pores, having the shape and surface morphology of the bionanoparticles replicated inside the silica, was produced,. This study is expected to lead to both functional composite materials and mesoporous silica with structurally well-defined large pores. Electronic Supplementary Material  Supplementary material is available for this article at and is accessible for authorized users.  相似文献   

3.
Zhao  Biao  Guo  Xiaoqin  Zhao  Wanyu  Deng  Jiushuai  Fan  Bingbing  Shao  Gang  Bai  Zhongyi  Zhang  Rui 《Nano Research》2017,10(1):331-343

Yolk–shell ternary composites composed of a Ni sphere core and a SnO2(Ni3Sn2) shell were successfully prepared by a facile two-step method. The size, morphology, microstructure, and phase purity of the resulting composites were characterized by scanning electron microscopy, energy dispersive X-ray spectroscopy, transmission electron microscopy (TEM), high-resolution TEM, selected-area electron diffraction, and powder X-ray diffraction. The core sizes, interstitial void volumes, and constituents of the yolk–shell structures varied by varying the reaction time. A mechanism based on the time-dependent experiments was proposed for the formation of the yolk–shell structures. The yolk–shell structures were formed by a synergistic combination of an etching reaction, a galvanic replacement reaction, and the Kirkendall effect. The yolk–shell ternary SnO2 (Ni3Sn2)@Ni composites synthesized at a reaction time of 15 h showed excellent microwave absorption properties. The reflection loss was found to be as low as–43 dB at 6.1 GHz. The enhanced microwave absorption properties may be attributed to the good impedance match, multiple reflections, the scattering owing to the voids between the core and the shell, and the effective complementarities between the dielectric loss and the magnetic loss. Thus, the yolk–shell ternary composites are expected to be promising candidates for microwave absorption applications, lithium ion batteries, and photocatalysis.

  相似文献   

4.
In this work we report the development of a rapid and selective etching strategy to synthesize a dual-yolk/shell nanostructure consisting of semiconductor-metal hybrid nanocrystals and hollow SiO2 for the first time. By utilizing CdSe/CdS/ZnS quantum dot (CSSQD)/SiO2 core/shell nanoparticles as the template and aurate hydroxyl complexes [Au(OH) 4 ? ] as the Trojan-type inside-out etching agent, rapid formation of CSSQD-Au hybrid nanocrystal dual-yolk and SiO2 hollow shell occur during the reduction of Au(OH) 4 ? on CSSQD cores accompanied by localized hydroxyl-liberation from Au(OH) 4 ? at the interface between silica and CSSQD. Unlike surface-protected etching strategies, a selective as well as directional etching takes place from the silica internal surface and the thickness of the silica shell can be controlled by varying the etching time. Moreover, the size of attached Au nanoclusters can be tuned by subsequent light exposure. Consequently, the resulting platform offers a number of attractive features: (1) a new, directional, and rapid etching approach toward the formation of hollow silica nanostructures in solution; (2) semiconductor/metal hybrid nanocrystals as yolks within hollow silica nanospheres have been reported for the first time; and (3) the ability, through light exposure, to tune the size of the attached metal nanoclusters on the encapsulated CSSQD within the hollow silica nanospheres. Most importantly, the synthetic method has the capability of introducing additional guest species (e.g. metals) into a primary yolk (e.g. semiconductor) of hollow silica nanoparticles, potentially leading to many promising applications in fuel cells, photocatalysis, bioimaging, and cancer therapy.   相似文献   

5.
Chiral nano-assemblies with amplified optical activity have attracted particular interest for their potential application in photonics, sensing and catalysis. Yet it still remains a great challenge to realize their real applications because of the instability of these assembled nanostructures. Herein, we demonstrate a facile and efficient method to fabricate ultra-stable chiral nanostructures with strong chiroptical properties. In these novel chiral nanostructures, side-by-side assembly of chiral cysteine-modified gold nanorods serves as the core while mesoporous silica acts as the shell. The chiral core–shell nanostructures exhibit an evident plasmonic circular dichroism (CD) response originating from the chiral core. Impressively, such plasmonic CD signals can be easily manipulated by changing the number as well as the aspect ratio of Au nanorods in the assemblies located at the core. In addition, because of the stabilization effect of silica shells, the chiroptical performance of these core–shell nanostructures is significantly improved in different chemical environments.
  相似文献   

6.
A facile one-pot method has been developed to synthesize uniform gold@mesoporous silica nanospheres (Au@MSNs), which have a well-defined core-shell structure with ordered mesoporous silica as a shell. The resulting Au@MSNs have a high surface area (~521 m2/g) and uniform pore size (~2.5 nm) for the mesoporous silica shell. The diameter of the gold core can be regulated by adjusting the amount of HAuCl4. The catalytic performance of the Au@MSNs was investigated using the reduction of 4-nitrophenol as a model reaction. The mesopores of the silica shells provide direct access for the reactant molecules to diffuse and subsequently interact with the gold cores. In addition, the Au@MSNs display the great advantage of sintering-resistance to 950 °C because the mesoporous silica shells inhibit aggregation or deformation of the gold cores. The high thermal stability enables the Au@MSNs to be employed in high-temperature catalytic reactions.   相似文献   

7.
SiO2 and ZnO inverse structure replicas have been synthesized using butterfly wings as templates. The laser diffraction performance of the SiO2 inverse structure replica was investigated and it was found that the zero-order light spot split into a matrix pattern when the distance between the screen and the sample was increased. This unique diffraction phenomenon is closely related to the structure of the SiO2 inverse structure replica. On the other hand, by analyzing the photoluminescence spectrum of the ZnO replica, optical anisotropy in the ultraviolet band was demonstrated for this material.   相似文献   

8.
An approach for the wafer-level synthesis of size- and site-controlled amorphous silicon nanowires (α-SiNWs) is presented in this paper. Microscale Cu pattern arrays are precisely defined on SiO2 films with the help of photolithography and wet etching. Due to dewetting, Cu atoms shrink to the center of patterns during the annealing process, and react with the SiO2 film to open a diffusion channel for Si atoms to the substrate. α-SiNWs finally grow at the center of Cu patterns, and can be tuned by varying critical factors such as Cu pattern volume, SiO2 thickness, and annealing time. This offers a simple way to synthesize and accurately position a SiNW array on a large area.
  相似文献   

9.
Core-shell hybrid nanomaterials have shown new properties and functions that are not attainable by their single counterparts.Nanoscale confinement effect by porous inorganic shells in the hybrid nanostructures plays an important role for chemical transformation of the core nanoparticles.However,metal-organic frameworks(MOFs)have been rarely applied for understanding mechanical insight into such nanoscale phenomena in confinement,although MOFs would provide a variety of properties for the confining environment than other inorganic shells such as silica and zeolite.Here,we examine chemical transformation of a gold nanorod core enclosed by a zeolitic imidazolate framework(ZIF)through chemical etching and regrowth,followed by quantitative analysis in the core dimension and curvature.We find the nanorod core shows template-effective behavior in its morphological transformation.In the etching event,the nanorod core is spherically carved from its tips.The regrowth on the spherically etched core inside the ZIF gives rise toformation of a raspberry-like branched nanostructure in contrast to the growth of an octahedral shape in bulk condition.We attribute the shell-directed regrowth to void space generated at the interfaces between the etched core and the ZIF shell,intercrystalline gaps in mult-domain ZIF shells,and local structural deformation from the acidic reaction conditions.  相似文献   

10.
We have demonstrated the improved performance of oxygen evolution reactions (OER) using Au/nickel phosphide (Ni12P5) core/shell nanoparticles (NPs) under basic conditions. NPs with a Ni12P5 shell and a Au core, both of which have well-defined crystal structures, have been prepared using solution-based synthetic routes. Compared with pure Ni12P5 NPs and Au-Ni12P5 oligomer-like NPs, the core/shell crystalline structure with Au shows an improved OER activity. It affords a current density of 10 mA/cm2 at a small overpotential of 0.34 V, in 1 M KOH aqueous solution at room temperature. This enhanced OER activity may relate to the strong structural and effective electronic coupling between the single-crystal core and the shell.
  相似文献   

11.
Two fluorescent quantum clusters of gold, namely Au25 and Au8, have been synthesized from mercaptosuccinic acid-protected gold nanoparticles of 4–5 nm core diameter by etching with excess glutathione. While etching at pH ∼3 yielded Au25, that at pH 7–8 yielded Au8. This is the first report of the synthesis of two quantum clusters starting from a single precursor. This simple method makes it possible to synthesize well-defined clusters in gram quantities. Since these clusters are highly fluorescent and are highly biocompatible due to their low metallic content, they can be used for diagnostic applications. Electronic Supplementary Material  Supplementary material is available for this article at and is accessible for authorized users. This article is published with open access at Springerlink.com  相似文献   

12.
High quality InAs/InP/ZnSe core/shell/shell quantum dots have been grown by a one-pot approach. This engineered quantum dots with unique near-infrared (NIR) fluorescence, possessing outstanding optical properties, and the biocompatibility desired for in vivo applications. The resulting quantum dots have significantly lower intrinsic toxicity compared to NIR emissive dots containing elements such as cadmium, mercury, or lead. Also, these newly developed ultrasmall non-Cd containing and NIR-emitting quantum dots showed significantly improved circulation half-life and minimal reticuloendothelial system (RES) uptake.   相似文献   

13.
Semiconductor quantum dots (QDs) have shown great promise as fluorescent probes for molecular, cellular and in vivo imaging. However, the fluorescence of traditional polymer-encapsulated QDs is often quenched by proton-induced etching in acidic environments. This is a major problem for applications of QDs in the gastrointestinal tract because the gastric (stomach) environment is strongly acidic (pH 1–2). Here we report the use of proton-resistant surface coatings to stabilize QD fluorescence under acidic conditions. Using both hyperbranched polyethylenimine (PEI) and its polyethylene glycol derivative (PEG-grafted PEI), we show that the fluorescence of core shell CdSe /CdS/ ZnS QDs is effectively protected from quenching in simulated gastric fluids. In comparison, amphiphilic lipid or polymer coatings provide no protection under similarly acidic conditions. The proton-resistant QDs are found to cause moderate membrane damage to cultured epithelial cells, but PEGylation (PEG grafting) can be used to reduce cellular toxicity and to improve nanoparticle stability.   相似文献   

14.
The electronic properties of two-dimensional honeycomb structures of molybdenum disulfide (MoS2) subjected to biaxial strain have been investigated using first-principles calculations based on density functional theory. On applying compressive or tensile bi-axial strain on bi-layer and mono-layer MoS2, the electronic properties are predicted to change from semiconducting to metallic. These changes present very interesting possibilities for engineering the electronic properties of two-dimensional structures of MoS2.   相似文献   

15.
Magnetically recyclable Au/Co/Fe core-shell nanoparticles (NPs) have been successfully synthesized via a one-step in situ procedure. Transmission electron microscope (TEM), energy dispersive X-ray spectroscopic (EDS), and electron energy-loss spectroscopic (EELS) measurements revealed that the trimetallic Au/Co/Fe NPs have a triple-layered core-shell structure composed of a Au core, a Co-rich inter-layer, and a Fe-rich shell. The Au/Co/Fe core-shell NPs exhibit much higher catalytic activities for hydrolytic dehydrogenation of ammonia borane (NH3BH3, AB) than the monometallic (Au, Co, Fe) or bimetallic (AuCo, AuFe, CoFe) counterparts.   相似文献   

16.
We report a method using in situ etching to decouple the axial from the radial nanowire growth pathway, independent of other growth parameters. Thereby a wide range of growth parameters can be explored to improve the nanowire properties without concern of tapering or excess structural defects formed during radial growth. We demonstrate the method using etching by HCl during InP nanowire growth. The improved crystal quality of etched nanowires is indicated by strongly enhanced photoluminescence as compared to reference nanowires obtained without etching.   相似文献   

17.
Synthesis and optical properties of cubic gold nanoframes   总被引:1,自引:0,他引:1  
This paper describes a facile method of preparing cubic Au nanoframes with open structures via the galvanic replacement reaction between Ag nanocubes and AuCl2 . A mechanistic study of the reaction revealed that the formation of Au nanoframes relies on the diffusion of both Au and Ag atoms. The effect of the edge length and ridge thickness of the nanoframes on the localized surface plasmon resonance peak was explored by a combination of discrete dipole approximation calculations and single nanoparticle spectroscopy. With their hollow and open structures, the Au nanoframes represent a novel class of substrates for applications including surface plasmonics and surface-enhanced Raman scattering.   相似文献   

18.
Nearly monodisperse spherical amorphous Se colloids are prepared by the dismutation of Na2SeSO3 solution at room temperature; by altering the pH of the solution, amorphous Se colloid spheres with sizes of about 120 nm, 200 nm, 300 nm, and 1 μm can be obtained. Se@Ag2Se core/shell spheres are successfully synthesized by using the obtained amorphous Se (a-Se) spheres as templates, indicating the potential applications of these Se nanomaterials in serving as soft templates for other selenides. Meanwhile, selenium nanowires are obtained through a “solid-solution-solid” growth process by dispersing the prepared Se spheres in ethanol. This simple and environmentally benign approach may offer more opportunities in the synthesis and applications of nanocrystal materials. This article is published with open access at Springerlink.com  相似文献   

19.
Rattle structure is a topic of great interest in design and application of nanomaterials due to the unique core@void@shell architecture and the integration of functions. Herein, we developed a novel “ship-in-a-bottle” method to fabricate upconverting (UC) luminescent nanorattles by incorporating lanthanide-doped fluorides into hollow mesoporous silica. The size of nanorattles and the filling amount of fluorides can be well controlled. In addition, the modification of silica shell (with phenylene and amine groups) and the variation of efficient UC fluorides (NaYF4:Yb,Er, NaLuF4:Yb,Er, NaGdF4:Yb,Er and LiYF4:Yb,Er) were readily achieved. The resulting nanorattles exhibited a high capacity and pH-dependent release of the anti-cancer drug doxorubicin (DOX). Furthermore, we employed these nanorattles in proof-of-concept UC-monitoring drug release by utilizing the energy transfer process from UC fluorides to DOX, thus revealing the great potential of the nanorattles as efficient cancer theranostic agent.
  相似文献   

20.
The strong hydrogen bonding ability of 2-pyridones were exploited to build nanotrains on surfaces. Carborane wheels on axles difunctionalized with 2-pyridone hydrogen bonding units were synthesized and displayed spontaneous formation of linear nanotrains by self-assembly on SiO2 or mica surfaces. Imaging using atomic force microscopy confirmed linear formations with lengths up to 5 μm and heights within the range of the molecular height of the carborance-tipped axles. Electronic Supplementary Material  Supplementary material is available for this article at and is accessible for authorized users. This article is published with open access at Springerlink.com  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号