首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Communication between the 5' and 3' ends is a common feature of several aspects of eukaryotic mRNA metabolism. In the nucleus, the pre-mRNA 5' end is bound by the nuclear cap binding complex (CBC). This RNA-protein complex plays an active role in both splicing and RNA export. We provide evidence for participation of CBC in the processing of the 3' end of the message. Depletion of CBC from HeLa cell nuclear extract strongly reduced the endonucleolytic cleavage step of the cleavage and polyadenylation process. Cleavage was restored by addition of recombinant CBC. CBC depletion was found to reduce the stability of poly(A) site cleavage complexes formed in nuclear extract. We also provide evidence that the communication between the 5' and 3' ends of the pre-mRNA during processing is mediated by the physical association of the CBC/cap complex with 3' processing factors bound at the poly(A) site. These observations, along with previous data on the function of CBC in splicing, illustrate the key role played by CBC in pre-mRNA recognition and processing. The data provides further support for the hypothesis that pre-mRNAs and mRNAs may exist and be functional in the form of "closed-loops," due to interactions between factors bound at their 5' and 3' ends.  相似文献   

2.
The structural and accessory proteins of human immunodeficiency virus type 1 are expressed by unspliced or partially spliced mRNAs. Efficient transport of these mRNAs from the nucleus requires the binding of the viral nuclear transport protein Rev to an RNA stem-loop structure called the RRE (Rev response element). However, the RRE does not permit Rev to stimulate the export of unspliced mRNAs from the efficiently spliced beta-globin gene in the absence of additional cis-acting RNA regulatory signals. The p17gag gene instability (INS) element contains RNA elements that can complement Rev activity. In the presence of the INS element and the RRE, Rev permits up to 30 % of the total beta-globin mRNA to be exported to the cytoplasm as unspliced mRNA. Here, we show that a minimal sequence of 30 nt derived from the 5' end of the p17 gag gene INS element (5' INS) is functional and permits the export to the cytoplasm of 14% of the total beta-globin mRNA as unspliced pre-mRNA. Gel mobility shift assays and UV cross-linking experiments have shown that heterogeneous nuclear ribonucleoprotein (hnRNP) A1 and a cellular RNA-binding protein of 50 kDa form a complex on the 5' INS. Mutants in the 5' INS that prevent hnRNP A1 and 50 kDa protein binding are inactive in the transport assay. To confirm that the hnRNP A1 complex is responsible for INS activity, a synthetic high-affinity binding site for hnRNP A1 was also analysed. When the high affinity hnRNP A1 binding site was inserted into the beta-globin reporter, Rev was able to increase the cytoplasmic levels of unspliced mRNAs to 14%. In contrast, the mutant hnRNP A1 binding site, or binding sites for hnRNP C and L are unable to stimulate Rev-mediated RNA transport. We conclude that hnRNP A1 is able to direct unspliced globin pre-mRNA into a nuclear compartment where it is recognised by Rev and then transported to the cytoplasm.  相似文献   

3.
This review discusses the structure and function of the influenza virus NS1 and NS2 proteins. The NS1 is a phosphoprotein and has two nuclear localization signals. In the nucleus, the NS1 interferes with the splicing as well as the nuclear export of cellular mRNAs. In the later time of the infection, the NS1 is present in the cytoplasm and associates with the polysomes. The NS1 binds to the 5'UTR of some viral mRNAs and stimulates translation. The NS2 is a phosphoprotein and binds to the nucleoporin yRip1 and Rab/hRip as well as the M1 protein which associates with the vRNPs. Therefore, the NS2 protein plays an important role in the nuclear export of the vRNPs. Improved technique to genetically manipulate influenza virus allowed us to rescue NS1 and NS2 mutants which are useful for further study.  相似文献   

4.
5.
We used the yeast interaction trap system to identify a novel human 70-kDa protein, termed NS1-binding protein (NS1-BP), which interacts with the nonstructural NS1 protein of the influenza A virus. The genetic interaction was confirmed by the specific coprecipitation of the NS1 protein from solution by a glutathione S-transferase-NS1-BP fusion protein and glutathione-Sepharose. NS1-BP contains an N-terminal BTB/POZ domain and five kelch-like tandem repeat elements of approximately 50 amino acids. In noninfected cells, affinity-purified antibodies localized NS1-BP in nuclear regions enriched with the spliceosome assembly factor SC35, suggesting an association of NS1-BP with the cellular splicing apparatus. In influenza A virus-infected cells, NS1-BP relocalized throughout the nucleoplasm and appeared distinct from the SC35 domains, which suggests that NS1-BP function may be disturbed or altered. The addition of a truncated NS1-BP mutant protein to a HeLa cell nuclear extract efficiently inhibited pre-mRNA splicing but not spliceosome assembly. This result could be explained by a possible dominant-negative effect of the NS1-BP mutant protein and suggests a role of the wild-type NS1-BP in promoting pre-mRNA splicing. These data suggest that the inhibition of splicing by the NS1 protein may be mediated by binding to NS1-BP.  相似文献   

6.
Sequence conservation among mammalian poly(A) sites is limited to the sequence AAUAAA, coupled with an amorphous downstream U- or GU-rich region. Since these sequences may also occur within the coding region of mRNAs, additional information must be required to define authentic poly(A) sites. Several poly(A) sites have been shown to contain sequences outside the core elements that enhance the efficiency of 3' processing in vivo and in vitro. The human immunodeficiency virus type 1, equine infectious anemia virus, and adenovirus L1 3' processing enhancers have been shown to promote the binding of cleavage and polyadenylation specificity factor (CPSF), the factor responsible for recognition of AAUAAA, to the pre-mRNA, thereby facilitating the assembly of a stable 3' processing complex. We have used in vitro selection to examine the mechanism by which the human immunodeficiency virus type 1 3' processing enhancer promotes the interaction of CPSF with the AAUAAA hexamer. Surprisingly, RNAs selected for efficient polyadenylation were related by structure rather than sequence. Therefore, in the absence of extensive sequence conservation, our results strongly suggest that RNA structure is a critical determinant of poly(A) site recognition by CPSF and may play a key role in poly(A) site definition.  相似文献   

7.
8.
The 3' ends of most eukaryotic messenger RNAs are generated by endonucleolytic cleavage and polyadenylation. In mammals, the cleavage and polyadenylation specificity factor (CPSF) plays a central role in both steps of the processing reaction. Here, the cloning of the 73-kilodalton subunit of CPSF is reported. Sequence analyses revealed that a yeast protein (Ysh1) was highly similar to the 73-kD polypeptide. Ysh1 constitutes a new subunit of polyadenylation factor I (PFI), which has a role in yeast pre-mRNA 3'-end formation. This finding was unexpected because in contrast to CPSF, PFI is only required for the polyadenylation reaction. These results contribute to the understanding of how 3'-end processing factors may have evolved.  相似文献   

9.
Endonucleolytic cleavage of pre-mRNAs is the first step during eukaryotic mRNA 3' end formation. It has been proposed that cleavage factors CF IA, CF IB and CF II are required for pre-mRNA 3' end cleavage in yeast. CF IB is composed of a single polypeptide, Nab4p/Hrp1p, which is related to the A/B group of metazoan heterogeneous nuclear ribonucleoproteins (hnRNPs) that function as antagonistic regulators of 5' splice site selection. Here, we provide evidence that Nab4p/Hrp1p is not required for pre-mRNA 3' end endonucleolytic cleavage. We show that CF IA and CF II devoid of Nab4p/Hrp1p are sufficient to cleave a variety of RNA substrates but that cleavage occurs at multiple sites. Addition of Nab4p/Hrp1p prevents these alternative cleavages in a concentration-dependent manner, suggesting an essential and conserved role for some hnRNPs in pre-mRNA cleavage site selection.  相似文献   

10.
The biosynthesis of U1, U2, U4 and U5 spliceosomal small nuclear RNAs (snRNAs) involves the nuclear export of precursor molecules extended at their 3' ends, followed by a cytoplasmic phase during which the pre-snRNAs assemble into ribonucleoprotein particles and undergo hypermethylation of their 5' caps and 3' end processing prior to nuclear import. Previous studies have demonstrated that the assembly of pre-snRNAs into ribonucleoprotein particles containing the Sm core proteins is essential for nuclear import in mammalian cells but that 5' cap hypermethylation is not. In the present investigation we have asked whether or not 3' end processing is required for nuclear import of U2 RNA. We designed human pre-U2 RNAs that carried modified 3' tails, and identified one that was stalled (or greatly slowed) in 3' end processing, leading to its accumulation in the cytoplasm of human cells. Nonetheless, this 3' processing arrested pre-U2 RNA molecule was found to undergo cytoplasmic assembly into Sm protein-containing complexes to the same extent as normal pre-U2 RNA. The Sm protein-associated, unprocessed mutant pre-U2 RNA was not observed in the nuclear fraction. Using an assay based on suppression of a genetically blocked SV40 pre-mRNA splicing pathway, we found that the 3' processing deficient U2 RNA was significantly reduced in its ability to rescue splicing, consistent with its impaired nuclear import.  相似文献   

11.
12.
The constitutive transport elements (CTEs) of type D retroviruses are cis-acting elements that promote nuclear export of incompletely spliced mRNAs. Unlike the Rev response element (RRE) of human immunodeficiency virus type 1 (HIV-1), CTEs depend entirely on factors encoded by the host cell genome. We show that an RNA comprised almost entirely of the CTE of Mason-Pfizer monkey virus (CTE RNA) is exported efficiently from Xenopus oocyte nuclei. The CTE RNA and an RNA containing the RRE of HIV-1 (plus Rev) have little effect on export of one another, demonstrating differences in host cell requirements of these two viral mRNA export pathways. Surprisingly, even very low amounts of CTE RNA block export of normal mRNAs, apparently through the sequestration of cellular mRNA export factors. Export of a CTE-containing lariat occurs when wild-type CTE, but not a mutant form, is inserted into the pre-mRNA. The CTE has two symmetric structures, either of which supports export and the titration of mRNA export factors, but both of which are required for maximal inhibition of mRNA export. Two host proteins bind specifically to the CTE but not to non-functional variants, making these proteins candidates for the sequestered mRNA export factors.  相似文献   

13.
14.
15.
During the development of mouse B cells there is a regulated shift from the production of membrane (mb) to secretory-specific (sec) forms of immunoglobulin (Ig) mRNA. The mRNAs are produced from one gene that is alternatively processed at the 3' end. We have previously shown that there is an increase in polyadenylation efficiency accompanying the developmentally regulated shift to secretory-specific forms of Ig mRNA by DNA transfection experiments (1). When we look in vitro at nuclear extracts prepared from early/memory versus late stage/plasma B cells, we see cell stage-specific differences in the proteins which are crosslinked to poly(A) site-containing RNAs. Here we show that one of these proteins is the mouse homologue of 100 kDa subunit of Hela CPSF by immunoprecipitation and Western analysis of UV crosslinked material. The amount of 100 kDa protein and its mobility on two-dimensional gels do not change between the B cell stages. However, the binding of the 100 kDa polypeptide to poly(A) sites increases in the late stage/plasma cell lines relative to the binding seen in early/memory cell lines. The increased binding may reflect an increase in polyadenylation efficiency at the sec poly(A) site in plasma cells versus early/memory cells seen in vivo.  相似文献   

16.
In the gene of the neural cell adhesion molecule, the 5' splice site of the alternate exon 18 plays an important role in establishing regulated splicing profiles. To understand how the 5' splice site of exon 18 contributes to splicing regulation, we have investigated the interaction of the U2AF65 splicing factor to pre-mRNAs that contained portions of the constitutive exon 17 or the alternate exon 18 fused to exon 19 and separated by a shortened intron. Despite sharing an identical 3' splice site, only the pre-mRNA that contained a portion of exon 17 and its associated 5' splice site displayed efficient U2AF65 cross-linking. Strikingly, a G-->U mutation at position +6 of the intron, converting the 5' splice site of exon 18 into that of exon 17, stimulated U2AF65 crosslinking. The improved cross-linking efficiency of U2AF65 to a pre-mRNA carrying the 5' splice site of exon 17 required the integrity of the 5' end of U1 but not of U2 small nuclear RNA. Our results indicate that neural cell adhesion molecule 5' splice site sequences influence U2AF65 binding through a U1 small nuclear ribonucleoprotein/U2AF interaction that occurs at the commitment stage of spliceosome assembly, before stable binding of the U2 small nuclear ribonucleoprotein. Thus, the 5' splice sites of exons 17 and 18 differentially affect U2AF65 binding to the 3' splice site of exon 19. Factors that modulate U1 small nuclear ribonucleoprotein binding to these 5' splice sites may play a critical role in regulating exon 18 skipping.  相似文献   

17.
The bovine papillomavirus type 1 (BPV-1) exonic splicing suppressor (ESS) is juxtaposed immediately downstream of BPV-1 splicing enhancer 1 and negatively modulates selection of a suboptimal 3' splice site at nucleotide 3225. The present study demonstrates that this pyrimidine-rich ESS inhibits utilization of upstream 3' splice sites by blocking early steps in spliceosome assembly. Analysis of the proteins that bind to the ESS showed that the U-rich 5' region binds U2AF65 and polypyrimidine tract binding protein, the C-rich central part binds 35- and 54-55-kDa serine/arginine-rich (SR) proteins, and the AG-rich 3' end binds alternative splicing factor/splicing factor 2. Mutational and functional studies indicated that the most critical region of the ESS maps to the central C-rich core (GGCUCCCCC). This core sequence, along with additional nonspecific downstream nucleotides, is sufficient for partial suppression of spliceosome assembly and splicing of BPV-1 pre-mRNAs. The inhibition of splicing by the ESS can be partially relieved by excess purified HeLa SR proteins, suggesting that the ESS suppresses pre-mRNA splicing by interfering with normal bridging and recruitment activities of SR proteins.  相似文献   

18.
19.
The Drosophila sex determination gene transformer-2 (tra-2) is a splicing regulator that affects the sex-specific processing of several distinct pre-mRNAs. While the tra-2 gene itself is known to produce alternative mRNAs that together encode three different TRA-2 protein isoforms, the respective roles of these isoforms in affecting individual pre-mRNA targets has remained unclear. We have generated transgenic fly strains with mutations affecting specific TRA-2 isoforms to investigate their individual roles in regulating the alternative processing of doublesex, exuperantia and tra-2 pre-mRNA. Our results indicate that in somatic tissues two different isoforms function redundantly to direct female differentiation and female-specific doublesex pre-mRNA splicing. In the male germline, where tra-2 has an essential role in spermatogenesis, a single isoform was found to uniquely perform all necessary functions. This isoform appears to regulate its own synthesis during spermatogenesis through a negative feedback mechanism involving intron retention.  相似文献   

20.
We have identified a class of pre-mRNAs that are spliced in HeLa extracts depleted for U1 snRNP (delta U1 extracts). Previously, we described pre-mRNAs that can be spliced in delta U1 extracts only when high concentrations of SR splicing factors are added. In contrast, the substrates characterized here are efficiently processed in delta U1 extracts without the addition of excess SR proteins. The members of this class comprise both a naturally occurring pre-mRNA, from the Drosophila fushi tarazu gene, and a chimera containing sequences from two different pre-mRNAs that individually are dependent upon U1 snRNP or excess SR proteins. Several sequence elements account for the variations in dependence on U1 snRNP and SR proteins for splicing. In one pre-mRNA, a single element was identified adjacent to the branch site. In the other, two elements flanking the 5' splice site were found to be critical. This U1-independent splicing reaction may provide a mechanism for cells to control the extent of processing of different classes of pre-mRNAs in response to altered activities of SR proteins, and furthermore suggests that U1 snRNP-independent splicing may not be uncommon.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号