首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The electro-catalytic oxidation of methanol on a Ni–Cu alloy (NCA) with atomic ratio of 60/40 having previously undergone 50 potential sweep cycles in the range 0–600 mV vs. (Ag/AgCl) in 1 m NaOH was studied by cyclic voltammetry (CV), chronoamperometry (CA) and impedance spectroscopy (EIS). The electro-oxidation was observed as large anodic peaks both in the anodic and early stages of the cathodic direction of potential sweep around 420 mV vs. (Ag/AgCl). The electro-catalytic surface was at least an order of magnitude superior to a pure nickel electrode for methanol oxidation. The diffusion coefficient and apparent rate constant of methanol oxidation were found to be 2.16 × 10−4 cm2 s−1 and 1979.01 cm3 mol−1 s−1, respectively. EIS studies were employed to unveil the charge transfer rate as well as the electrical characteristics of the catalytic surface. For the electrochemical oxidation of methanol at 5.0 m concentration, charge transfer resistance of nearly 111 Ω was obtained while the resistance of the electro-catalyst layer was ca. 329 Ω.  相似文献   

2.
Multi-walled carbon nanotubes (MWCNTs) were grown by chemical vapor deposition. The effect of the composition of carbon paste electrode on its voltammograms was evaluated in basic solution with 5.0×10−5 M tryptophan (Trp). It was found that addition of MWCNTs to the carbon paste would generate the peak current of Trp because of its catalytic effect on the redox process. The pH strongly affects the peak potential of Trp. The best analytical response was obtained at pH 13.0. The anodic peak currents were proportional to Trp concentrations in the range of 1.0×10−9−1.0×10−4 M under the optimized experimental conditions. The detection limit was 2.2×10−10 M. The effect of potential scan rate on the peak potential and peak current of tryptophan was investigated. The correlation of the peak currents against v1/2 (v is the scan rate) is linear, which is very similar to a diffusion-controlled process. The proposed biosensor was applied to the determination of Trp in pharmaceuticals formulations successfully.  相似文献   

3.
Titanium (IV) Phosphate copper hexacyanoferrate composite (TiPhCuHCF) was prepared using a new methodology for the synthesis. A preliminary characterization of the precursor and resulting materials was defined using spectroscopic and chemical techniques. The cyclic voltammogram of the modified electrode containing TiPhCuHCF exhibited two redox couples. The first and second redox couples present a formal potential (E θ′) of 0.18 and 0.76 V and were ascribed to the Cu+/Cu2+ (E θ′)1 and Fe2+(CN)6/Fe3+(CN)6 (E θ′)2 processes, respectively. In a preliminary study, the peak located at 0.76 V displays a sensitive response to N-acetylcysteine. The modified graphite paste electrode showed a linear range from 1.0 × 10−5 to 7.0 × 10−4 mol L−1 for the determination of N-acetylcysteine with a limit detection of 6.96 × 10−5 mol L−1 and relative standard deviation of ± 5% (n = 3) and amperometric sensitivity of 24.79 × 10−3 A mol L−1. The modified electrode was electrochemically stable and showed good reproducibility.  相似文献   

4.
The performance of an amperometric biosensor constructed by associating tyrosinase (Tyr) enzyme with the advantages of a 3D gold nanoelectrode ensemble (GNEE) is evaluated in a flow-injection analysis (FIA) system for the analysis of l-dopa. GNEEs were fabricated by electroless deposition of the metal within the pores of polycarbonate track-etched membranes. A simple solvent etching procedure based on the solubility of polycarbonate membranes is adopted for the fabrication of the 3D GNEE. Afterward, enzyme was immobilized onto preformed self-assembled monolayers of cysteamine on the 3D GNEEs (GNEE-Tyr) via cross-linking with glutaraldehyde. The experimental conditions of the FIA system, such as the detection potential (−0.200 V vs. Ag/AgCl) and flow rates (1.0 mL min−1) were optimized. Analytical responses for l-dopa were obtained in a wide concentration range between 1 × 10−8 mol L−1 and 1 × 10−2 mol L−1. The limit of quantification was found to be 1 × 10−8 mol L−1 with a resultant % RSD of 7.23% (n = 5). The limit of detection was found to be 1 × 10−9 mol L−1 (S/N = 3). The common interfering compounds, namely glucose (10 mmol L−1), ascorbic acid (10 mmol L−1), and urea (10 mmol L−1), were studied. The recovery of l-dopa (1 × 10−7 mol L−1) from spiked urine samples was found to be 96%. Therefore, the developed method is adequate to be applied in the clinical analysis.  相似文献   

5.
The influence of sorbitol or glycerol on the electrodeposition of ZnNi alloys and on the morphology, composition and structure of the ZnNi deposits was investigated. The highest current efficiency (CE), around 90%, was obtained in the presence of glycerol in the potential range from approximately −1.30 V to −1.40 V, while in the presence of sorbitol or absence of either polyalcohol the CE was 82–85%, for the same potential range. Scanning electron microscopy (SEM) analysis showed that ZnNi deposition at −1.26 V or −1.40 V from a bath with sorbitol led to the formation of more compact deposits than with glycerol. Energy dispersive X-ray spectroscopy (EDS) analysis showed that the Ni content in the deposit obtained in the presence of sorbitol remained in the range of 7–9.5 wt% Ni, over a large range of deposition conditions. On the other hand, ZnNi deposits with variable Ni content (5.5–19.5 wt% Ni) were obtained from baths with glycerol or without either polyalcohol, by shifting the deposition potential. All ZnNi deposits showed uniform distribution of the elements Zn and Ni. X-ray analysis of ZnNi deposits obtained from plating baths with and without polyalcohol’s at −1.26 and −1.40 V presented the γ, γ1 and Pt3–Zn phases.  相似文献   

6.
The improvement of the rutin photostability and its prolonged in vitro antioxidant activity were studied by means of its association with nanostructured aqueous dispersions. Rutin-loaded nanocapsules and rutin-loaded nanoemulsion showed mean particle size of 124.30 ± 2.06 and 124.17 ± 1.79, respectively, polydispersity index below 0.20, negative zeta potential, and encapsulation efficiency close to 100%. The in vitro antioxidant activity was evaluated by the formation of free radical ·OH after the exposure of hydrogen peroxide to a UV irradiation system. Rutin-loaded nanostructures showed lower rutin decay rates [(6.1 ± 0.6) 10−3 and (5.1 ± 0.4) 10−3 for nanocapsules and nanoemulsion, respectively] compared to the ethanolic solution [(35.0 ± 3.7) 10−3 min−1] and exposed solution [(40.1 ± 1.7) 10−3 min−1] as well as compared to exposed nanostructured dispersions [(19.5 ± 0.5) 10−3 and (26.6 ± 2.6) 10−3, for nanocapsules and nanoemulsion, respectively]. The presence of the polymeric layer in nanocapsules was fundamental to obtain a prolonged antioxidant activity, even if the mathematical modeling of the in vitro release profiles showed high adsorption of rutin to the particle/droplet surface for both formulations. Rutin-loaded nanostructures represent alternatives to the development of innovative nanomedicines.  相似文献   

7.
Evidence is presented that cardiolipin, a naturally occurring phospholipid, inhibits the aggregatory effect of platelet-activating factor (paf) on rabbit plateletsin vitro. Bovine heart cardiolipin was shown to inhibit the aggregation of washed rabbit platelets induced by 1×10−10 M and 2×10−10 M paf with IC50 values (doses for half-maximal inhibition) of 8.4±0.8×10−7 M and 2.6±0.6×10−6 M, respectively. Phosphonocardiolipin was also able to inhibit platelet aggregation induced by 1× 10−10 M paf with an IC50 value of 3±1×10−7M. Both compounds, in concentrations up to 1×10−5 M, were unable to aggregate washed rabbit platelets and failed to inhibit the aggregation induced by 0.9 and 1.8 μM adenosine diphosphate or 0.2–1.0 μM arrchidonic acid. By contrast, the acetylated derivative of cardiolipin exerted an aggregatory effect on aspirin-treated rabbit platelets in the presence of creatine phosphate/creatine phosphokinase. This aggregation was inhibited by the specific paf antagonists BN 52021 and WEB 2086. Also, platelets treated with acetyl-cardiolipin were insensitive to the aggregatory effect of paf. Phosphatidic acid, phosphatidylglycerol,bis(dipalmitoylglycero)phosphate and their phosphono analogues were totally inactive. Similar data were obtained when platelet-rich plasma was used instead of washed rabbit platelets. Our results support the hypothesis that the effect of cardiolipin is mediated through specific paf receptors that act on the rabbit platelet membrane.  相似文献   

8.
We report the development of a novel Nd(III) ion-selective PVC-based membrane sensor, based on 2-{[(6-aminopyridin-2-yl)imino]methyl}phenol (APIMP) as the membrane carrier. The sensor has a Nernstian slope of 19.6±0.3 mV per decade over the concentration range of 1.0× 10−5−1.0×10−2 M, and a detection limit of 2.0× 10−6 M of Nd(III) ions. The potentiometric response of the sensor is independent pH solution in the pH range 3.5–8.5. It has advantages of low resistance, very fast response time (<10 s) and, most importantly, good selectivity with respect to a number of lanthanide ions. Using the proposed membrane sensor in a 6 weeks period caused no significant divergences in its potential response. To assess its analytical applicability the sensor was successfully applied as an indicator electrode in the titration of Nd(III) ion solution with EDTA.  相似文献   

9.
The redox and transport behavior of monovalent copper species in an ammonium imide-type ionic liquid, trimethyl-n-hexylammonium bis((trifluoromethyl)sulfonyl)amide (TMHA-Tf2N) were examined with a micro-disc electrode to clarify its applicability to, for example, electroplating. It was found that the diffusion coefficient of Cu(I) ions in TMHA-Tf2N containing 12 mmol dm−3 Cu(I) ions was 1.2 × 10−6 cm2 s−1 and the redox potential of Cu(I)/Cu was in the potential range 0.1–0.2 V vs. I /I 3 at 50 °C. The diffusion coefficient was one order smaller than that of Cu(II) ions in aqueous solution due to the high viscosity of the ionic liquid. The diffusion coefficient of Cu(I) ion increased with rising temperature and was 1.0 × 10−5 cm2 s−1 at 112 °C, which was comparable to that of Cu(II) ions in aqueous CuSO4 solutions at ambient temperature. This is accounted for by the drastic decrease in the viscosity of the ionic liquid solution with increasing temperature. The activation energy of diffusion was estimated to be 39 kJ mol−1 in the ionic liquid solution.  相似文献   

10.
Poly(vinyl chloride) (PVC)-based membranes of pyrimidines, 1-(2′-aminoaryl)-4, 4, 6-trimethyl-1, 4, 5, 6-tetrahydro-6-hydroxypyrimidine-2-thiol (HPT) (R = −H, −CH3, −OCH3) with sodium tetraphenylborate (NaTPB) as an anion inhibitor and dibutylphthalate (DBP), dioctylphthalate (DOP), dibutyl (butyl) phosphonate (DBBP) and 1-chloro naphthalene (CN) as plasticizing solvent mediators were prepared and used as Hg2+ selective electrodes. Optimum performance was observed with the membrane having HPT(−OCH3)−PVC−NaTPB−DOP in the ratio 1:33:1:65 (w/w). The electrode works well over a wide concentration range 5.0 × 10−6−1.0 × 10−1 M (detection limit 1.0 ppm) with Nernstian compliance (29.5 mV decade−1) between pH 2.5 and 4.0 with a fast response time of about 20 s. The selectivity coefficient values of the order of 0.001 for mono-, bi- and trivalent cations, indicate high selectivity for Hg2+ ions over these cations. Further, anions such as Cl and SO 4 2− do not interfere in the functioning of Hg2+ sensor. The electrodes were used over a period of five months with good reproducibility (std. dev. ±0.2 mV) and the performance of the electrodes was found satisfactory even up to 10% nonaqueous medium. The electrode assembly was also evaluated for potentiometric determination of Hg2+.  相似文献   

11.
Two potentiometric sensors responsive to sildenafil citrate (SC) drug (the active component of viagra) are described, characterized, compared and used for drug assessment. The sensors are based on the use of the ion-association complexes of (SC) cation with tungstophosphate (TP) and reineckate (Re) anions as electroactive materials in plasticized poly(vinyl chloride) membranes. The sensors demonstrate fast near-Nernstian response for SC over the concentration ranges 1.0×10−2–7.9×10−7 and 1.0×10−2–1.0×10−6 M with detection limits of 0.53 and 0.67 μg ml−1 over pH 3–6 for TP and Re based membrane sensors, respectively. The sensors display good selectivity for SC drug over many nitrogeneous compounds, some inorganic cations and excipients and diluents commonly used in drug formulations. Validation of the assay methods with both sensors by measuring the lower detection limit, range, accuracy, precision, repeatability and between-day-variability reveals good performance characteristics confirming applicability for continuous determination of SC in pharmaceutical formulations and in spiked human serum. A membrane incorporating SC–TP complex in a tubular flow detector is used in a two channel flow injection set up for continuous monitoring of the drug at a frequency of 25–30 samples h−1. The results obtained with drugs containing 50–100 mg SC tablet−1 show a mean standard deviation of ±2% of the nominal which agree fairly well with data obtained by spectrophotometry.  相似文献   

12.
The ac response of polyaniline thin films on platinum electrodes was measured at different dc potentials during the N2-fixation in methanol + LiClO4 electrolyte with 0.03 mol L−1 H2SO4 for the first time. The optimum film thickness was found to be 1.5 μm, N2-pressure 50 bar and an optimum electrolysis potential of −0.12 V (NHE). The diffusion coefficients for N2 into the polymer film was found to be (5 ± 2)×10−9 cm2 s−1.  相似文献   

13.
A Th4+ ion-selective membrane sensor was fabricated from poly (vinyl chloride) (PVC) matrix membrane containing 2-(diphenylphosphorothioyl)-N′,N′-diphenyl acetamide (DPTD) as a neutral carrier, potassium tetrakis (p-chlorophenyl) borate (KTpClPB) as anionic excluder and o-nitrophenyloctyl ether (NPOE) as a plasticizing solvent mediator. The effects of the membrane composition, pH and additive anionic influence on the response properties were investigated. The sensor, comprising 30% PVC, 63% solvent mediator, 4% ionophore and 3% anionic additive demonstrates the best potentiometric response characteristics. It displays Nernstian behavior (15.2 ± 0.5 mV per decade) over the concentration range 1.0 × 10−2–1.0 × 10−6 M. The detection limit of the electrode is 6.3 × 10−7 M (∼140 ng/ml). The response time of the electrode is 30 s .The sensor can be used in the pH range 3.0–9.0 for about 6 weeks. The membrane sensor was used as an indicator electrode in the potentiometric titration of Th4+ ions with EDTA. It was successfully applied to the determination of thorium ions in binary mixture.  相似文献   

14.
Catalase (Ct) was modified using Woodward’s reagent K (WRK) as a specific modifier of carboxyl residues. The modified Ct was immobilized on an oxidatively activated glassy carbon electrode surface to investigate its direct electrochemistry. Using cyclic voltammetry an irreversible reduction peak was obtained at approximately −0.362 V vs. Ag/AgCl in buffer solution, pH 7, and at a scan rate of 0.1 V s−1. The electrochemical parameters, including charge-transfer coefficient (0.27), apparent heterogeneous electron transfer rate constant (13.51 ± 0.42 s−1) and formal potential of the Ct film (−0.275 V) were determined. The prepared enzyme electrode exhibited a response to H2O2.  相似文献   

15.
Impedance spectroscopy studies of the interface between lithium and ionic liquid (IL) showed the formation of a film (solid electrolyte interface, SEI), protecting metal from its further dissolution. Consequently, the potential of metallic lithium immersed in an electrolyte containing Li+ cations may be described as a Li|SEI|Li+ system, rather than simply Li/Li+. The potential of lithium-metal in a series of ionic liquids (and in a number of molecular liquids) containing Li+ cation (0.1 M) was measured versus the Ag|(Ag+ 0.01 M, cryptand 222 0.1 M, in acetonitrile) reference. The lithium-metal potential (E(Li|SEI|Li+)) was ca. −2.633 ± 0.017 V in ILs based on the [N(CF3SO2)2 ] anion, while −2.848 ± 0.043 V in ILs containing [BF4 ] anion (the difference is ca. 200 mV). In the case of ILs based on the triflate anion ([CF3SO3 ]), the cation of ionic liquid also influences the E(Li|SEI|Li+) value: it was ca. −1.987 ± 0.075 V for imidazolium based cations and much lower (−2.855 V) for the pyrrolidinium based cation. In ionic liquid based on the imidazolium cation and hexafluorophosphate anion ([PF6 ]), the Li/SEI/Li+ potential was −2.245 V. The Li|SEI|Li+ potential measured in cyclic carbonates was −2.780 ± 0.069 V while in dimethylsulfoxide showed the lowest value of ca. −3.285 V. The measured potentials were also expressed versus the formal potential of the ferrocene/ferrocinium redox couple, obtained from cyclic voltammetry.  相似文献   

16.
Dipyridamole [2,6-bis-diethanolamino-4,8-dipiperidinopyrimido-(5,4-d) pyrimidine], a well known platelet aggregation inhibitor, shows powerful hydroxyl radical scavenging activity by inhibiting OH-dependent salicylate and deoxyribose degradation. Steady-state competition kinetics experiments with deoxyribose were carried out to evaluate the second-order rateconstant for the reaction between hydroxyl radical and dipyridamole. OH· radicals were generated either by a Fenton-type reaction or by X-ray irradiation of water solutions. A second-order rate constant k(Dipyridamole+OH·) of 1.72±0.11×1010M−1 s−1 and of 1.54±0.15×1010 M−1 s−1 was measured by Fenton chemistry and by radiation chemistry, respectively. Mannitol was used as an internal standard for hydroxyl radicals in steady-state competition experiments with deoxyribose. A rate constant k(Mannitol+OH·) of 1.58±0.13×109 M−1 s−1 and 1.88±0.14×109 M−1 s−1 was measured in the Fenton model and in the water radiolysis system, respectively. Both these rate constants are in good agreement with the published data obtained by the “deoxyribose assay” and by pulse radiolysis.  相似文献   

17.
The reduction of palladium, rhodium and neodymium ions at concentrations of 0.94, 0.97 and 0.69 mol dm−3, respectively was studied in 1 mol dm−3 HNO3 or 1 mol dm−3 HCl, at a stainless steel and a vitreous carbon electrode, at 25 °C. At a vitreous carbon electrode in a solution containing rhodium and palladium ions in 1 mol dm−3 HCl electrolyte, the reduction of metal ions occurred at a similar potential to the formation of hydrogen gas, which impeded the selective separation of the two metals. At a stainless steel cathode in 1 mol dm−3 HNO3, palladium deposition occurred at a potential ≈0.35 V less negative than that of rhodium allowing the selective recovery of palladium. Neodymium ions were not electroactive in acidic chloride or nitrate media at pH 0. Using a solution obtained from a catalytic converter manufacturer containing palladium, rhodium and neodymium ions in 1 mol dm−3 HNO3, palladium ions were preferentially removed at 0.15 V versus SHE at an average cumulative current efficiency of 57%.  相似文献   

18.
This paper introduces the development of an original PVC membrane electrode, based on 4-chloro-1,2-bis(2-pyridinecarboxamido)benzene (CBPB) as a suitable carrier for the Ho3+ ion. The electrode presents a Nernstian slope of 19.7 ± 0.3 mV per decade for the Ho3+ ions across a broad working concentration range from 1.0 × 10−6 to 1.0 × 10−2 M. The lower detection limit was 8.5 × 10−7 M in the pH range 2.7–9.8, while the response time was rapid (<15 s). Therefore, this potentiometric sensor displayed good selectivity for a number of cations such as alkali, alkaline earth, transition and heavy metal ions. The practical applicability of the electrode was demonstrated by its use as an indicator electrode in the potentiometric titration of Ho3+ ions with EDTA and in the determination of F- in mouth wash samples.  相似文献   

19.
Even though nitrogen (N) is a key nutrient for successful cranberry production, N cycling in cranberry agroecosystems is not completely understood. Prior research has focused mainly on timing and uptake of ammonium fertilizer, but the objective of our study was to evaluate the potential for additional N contributions from hydrologic inputs (flooding, irrigation, groundwater, and precipitation) and organic matter (OM). Plant biomass, soil, surface and groundwater samples were collected from five cranberry beds (cranberry production fields) on four different farms, representing both upland and lowland systems. Estimated average annual plant uptake (63.3 ± 22.5 kg N ha−1 year−1) exceeded total average annual fertilizer inputs (39.5 ± 11.6 kg N ha−1 year−1). Irrigation, precipitation, and floodwater N summed to an average 23 ± 0.7 kg N ha−1 year−1, which was about 60% of fertilizer N. Leaf and stem litterfall added 5.2 ± 1.2 and 24.1 ± 3.0 kg N ha−1 year−1 respectively. The estimated net N mineralization rate from the buried bag technique was 5 ± 0.2 kg N ha−1 year−1, which was nearly 15% of fertilizer N. Dissolved organic nitrogen represented a significant portion of the total N pool in both surface water and soil samples. Mixed-ion exchange resin core incubations indicated that 80% of total inorganic N from fertilizer, irrigation, precipitation, and mineralization was nitrate, and approximately 70% of recovered inorganic N from groundwater was nitrate. There was a weak but significant negative relationship between extractable soil ammonium concentrations and ericoid mycorrhizal colonization (ERM) rates (r = −0.22, P < 0.045). Growers may benefit from balancing the N inputs from hydrologic sources and OM relative to fertilizer N in order to maximize the benefits of ERM fungi in actively mediating N cycling in cranberry agroecosystems.  相似文献   

20.
Pristine activated carbon (AcC) was oxidized by H2O2 under ultrasonic conditions. Compared with pristine AcC, the H2O2-oxidized AC possesses higher accumulation ability to trace levels of Cd2+. Based on this, a highly sensitive, simple and rapid electrochemical method was developed for the determination of Cd2+. In 0.01 mol L−1 HClO4 solution, Cd2+ was effectively accumulated at the surface of H2O2-oxidized AcC modified paste electrode, and then reduced to Cd under −1.10 V. During the following potential sweep from −1.10 to −0.50 V, reduced Cd was oxidized and a sensitive stripping peak appears at −0.77 V. The stripping peak current of Cd2+ changes linearly with concentration over the range 5.0 × 10−8 to 5.0 × 10−6 mol L−1. The limit of detection was found to be 3.0 × 10−8 mol L−1 for 2-min accumulation. Finally, this new sensing method was successfully used to detect Cd2+ in waste water samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号