首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 250 毫秒
1.
传统的合成孔径雷达(SAR)图像参数化有限模型都有其特定的物理背景或者数学假设,很难准确估计SAR图像中各地物的密度分布,为了解决这一问题,提出一种基于非参数化无限混合模型的SAR图像分割方法,该方法利用Dirichlet过程对SAR图像进行建模,进一步采用非参数化Bayes模型分割包含复杂地物目标的SAR图像。Dirichlet分布作为一种基于分布的分布可以确定不同类别的先验概率,由样本估计出密度函数来描述图像,从而可以更精确地分割各类地物。该算法在模拟图像与真实SAR图像上进行了比对测试,实验结果验证了Dirichlet过程混合模型SAR图像分割算法的有效性和稳健性。  相似文献   

2.
将改进后各向异性扩散相干斑抑制算法(SRADPRO)用于合成孔径雷达(SAR)图像相干斑抑制,并和脉冲发放皮层模型(SCM)结合,提出一种自适应SAR图像分割算法.该算法首先计算SAR图像均匀采样区的标准差,并以此评价SAR图像中相干斑的影响程度,进而自适应地决定是否采用SRADPRO进行降斑处理,然后再利用SCM进行图像分割.由于SCM的自动波扩散机理,使得该算法在获得分割后的SAR目标的同时,也得到了目标边缘检测结果.与多种常规算法的比较结果证明了SAR图像分割算法的有效性.  相似文献   

3.
由于医学图像的复杂性,一般图像分割方法对于医学图像的分割效果并不理想.针对医学CT图像特点,提出了一种把边缘检测和基于区域方法相结合的图像分割算法,首先使用Sobel算子进行边缘检测,检测出目标可能的边缘像素集,并计算该点的平均灰度,然后利用该灰度及目标区域的连通性作为生长判别条件,利用区域生长法实现图像的准确分割.实验结果表明,该方法避免了单独使用边缘检测或基于区域法进行图像分割时的典型错误,结合了两者的优点,取得了感兴趣目标的良好分割效果.  相似文献   

4.
快速的Otsu双阈值SAR图像分割法   总被引:2,自引:0,他引:2  
在分析SAR图像的统计分布特征的基础上,根据SAR图像自动目标识别对SAR图像分割的要求,提出了一种适合SAR图像的Otsu分割算法。算法首先利用CFAR进行粗分割,然后利用Otsu进行细分割。实验结果表明,该算法分割准确且计算量小,客观评价值较高。  相似文献   

5.
提出了基于伪极傅里叶变换和融合的SAR图像边缘检测算法.首先采用伪极傅里叶变换提取较弱的图像边缘特征,并利用Ratio边缘检测算法抑制相干斑噪声对SAR图像边缘特征的影响.然后利用两种算法所得到系数的幅值、方向和角度信息构建置信指派函数,引入D-S证据理论实现两种边缘检测算法的最优融合,获取了SAR图像最佳的边缘特征.仿真结果表明,该算法所提取的边缘特征完整、定位准确.  相似文献   

6.
提出了一种基于区域和边界信息的水平集SAR图像分割方法。该方法根据SAR图像的区域统计特征和边界梯度信息,建立SAR图像分割能量泛函模型;通过最小化能量泛函得到曲线演化偏微分方程;采用水平集方法求解演化方程,实现了SAR图像的分割。分别采用模拟和真实SAR图像对该方法进行了仿真。实验结果表明,该方法能充分利用SAR图像特征,不需要去除相干斑噪声的预处理过程,实现了对图像中目标与背景的正确分割。  相似文献   

7.
针对合成孔径雷达(SAR)目标检测精确性、实时性和鲁棒性的要求,设计了一种基于局部窗口的SAR图像目标检测算法。该算法在对获取的SAR图像进行去噪和分割处理的基础上,基于尺度不变特征变换(SIFT)实现了亚像素精度快速配准策略;同时,通过SIFT特征的描述结果降维和基于局部窗口的最大期望算法(EM)实现了目标检测。实验结果表明,该算法对复杂背景和光照、旋转变化有较强的自适应性,获得了理想的目标检测效果。  相似文献   

8.
带钢自动表面检测系统中缺陷图像的分割效果对缺陷识别具有重要影响.为了提高缺陷图像的分割效果,提出了采用 Mean shift 算法对带钢缺陷图像中的感兴趣区域进行平滑从而获取缺陷边缘的方法,并将该算法与中值滤波算法进行了比较.测试结果表明,Mean shift 算法能够有效地对缺陷图像中的感兴趣区域进行平滑,并精确得到缺陷目标的边缘,该算法在带钢的缺陷分割中具有较好的性能.  相似文献   

9.
一种基于边缘与分区的棒材端面图像的分割方法   总被引:2,自引:0,他引:2  
提出了一种利用图像边缘检测与图像分区的综合图像分割的方法。首先运用索贝尔边缘检测技术对原图像副本提取边缘并二值化,然后,对图像分区,结合各分区内边缘点集的特点,分别由全局阈值、子块阈值及分区扩大后阈值对各个分区实施合理分割。实验证明:该分割技术实现简单,应用于具有光照不均匀、子目标粘连、变形等特点的棒材端面图像的分割,效果十分理想。与已有分割方法的对比实验表明,该方法具有目标分割完整,子目标分割也较为合理的特点。  相似文献   

10.
一种基于特征区域分割的图像拼接算法   总被引:8,自引:1,他引:8  
针对图像采集和测量时需要将多幅图像拼接成一幅大图像的问题,提出了一种图像拼接算法,利用特征区域块分割技术来实现图像的拼接。用灰阶Sobel算子通过引入衰减因子对图像进行边缘检测得到不失真的灰阶边缘图,然后将灰阶边缘图进行三次样条插值处理,使特征区域块边缘的定位达到亚像素级,提高了图像边缘检测的精度,有利于图像的高精度拼接。实践结果表明,该算法简单易行,定位较准确,拼接效果好,能有效地克服图像质量的影响,当图像灰度值相差较大并且图像具有旋转时,该算法也能实现对图像无缝平滑拼接。  相似文献   

11.
火灾视频图像的边缘检测   总被引:1,自引:0,他引:1  
针对火灾视频图像存在较多噪声的特点,介绍了图像边缘的概念和几种传统的边缘检测算子,对各种边缘检测算子的优缺点进行了分析,给出了一种图像阈值分割与边缘检测相结合的方法.该方法先对火焰灰度图像进行分割,采用阈值迭代算法找到分割的阈值,使火焰与背景分离,然后再应用传统的边缘检测算子.通过利用拍摄的火焰视频图像对传统的算法和给出的算法进行多次试验及图像的对比分析,结果表明,提出的边缘检测方法检测出的火焰边缘在完整性和清晰度上具有更好的效果.  相似文献   

12.
为了解决彩色图像分割任务中有选择性的定位感兴趣区域的具体需求,基于Lavdie-Chen的灰度图像单水平集选择性分割方法,提出带几何约束的彩色图像选择性分割方法。该试验方法将彩色图像作为一个整体,求其梯度及边缘检测函数,借助边缘检测函数、目标物体约束点确定的距离函数以及形成的多边形内外面积,共同决定曲线演化进程中的方向与速度。区域信息的加入克服了边缘函数依赖单一图像梯度的缺点;正则化优化算法的引入克服了凹陷处分割效果不理想的缺点;加法分裂算子算法可以快速求解模型的Euler-Lagrange方程。试验结果表明,本研究提出的彩色图像选择性分割方法具有有效性强和正确性高的特点。  相似文献   

13.
针对乳腺X线影像肿块分割易受弱边缘和周围组织干扰的问题,提出一种基于自动随机游走的乳腺肿块分割算法.利用二维最大熵阈值法、区域生长及形态学方法自动确定一系列标记点,采用平均边缘梯度评价法选择有效标记点进行随机游走分割以获得初步分割结果,并在此分割基础上进行星芒状结构检测,获得完整的肿块分割边缘.随机选取227例肿块图像进行分割,对分割结果进行特征提取和分类.实验结果表明,该算法克服了半自动随机游走的应用局限性,提高了乳腺肿块的分割精度;与其他分割算法相比,该算法在后续的分类中具有更高的分类精度.  相似文献   

14.
基于特征的SAR图像与光学图像自动配准   总被引:7,自引:2,他引:5  
针对现有配准方法在用于SAR图像和光学图像配准时,存在受SAR图像相干斑噪声影响大,手工选取配准点精度低等缺点,提出了一种基于区域特征提取的图像配准方法.对SAR图像首先进行相干斑噪声抑制,并采用图像分割的方法提取出封闭区域的边界作为特征,然后与可见光中提取的边缘利用闭合区域边缘链码的相关寻求匹配,精确配准的误差达到子象素级水平.实验结果表明,该方法能够以较高的精确度从SAR图像中提取配准控制点,从而实现了多传感器图像的自动配准.  相似文献   

15.
提出了一种融合边缘和区域信息的变分水平集合成孔径雷达图像分割方法.该方法不需要去除相干斑噪声的预处理过程,利用具有恒虚警特性的Ratio算子提取合成孔径雷达图像的边缘信息,并与无边缘活动轮廓模型结合建立合成孔径雷达图像分割能量泛函模型,通过最小化能量泛函得到曲线演化偏微分方程,采用变分水平集方法求解演化方程,实现了合成孔径雷达图像的分割.分别采用模拟和真实合成孔径雷达图像对该方法进行了验证,实验结果表明,该方法实现了合成孔径雷达图像中目标与背景的正确分割,具有较好的边缘定位能力.  相似文献   

16.
针对传统区域分离-合并算法中过分割的问题,提出一种基于边缘提取和区域分离-合并相结合的分割算法。即利用Canny算子对图像进行边缘提取,得到边缘像素集。然后将像素集作为边缘线,采用区域分离-合并算法进行图像分割。由于Canny算子所提取的像素集是不完整的,所以需要用Hough变换对其进一步完善,得到连续的边缘线。该算法能够提高区域分离-合并算法的精确度,较好地解决其过分割的问题。实验结果表明,该算法有效。  相似文献   

17.
为了使交互式工件分割算法满足实时性的要求,提出了一种将工件形态特征与图像分割算法相结合的工件自动分割方法.利用MeanShift算法分割图像提取目标区域;利用形态学开运算消除目标区域的噪声,进而分离相连的目标区域;对目标区域进行边缘检测,计算完整的工件轮廓信息,然后根据外轮廓的面积确定工件区域;利用工件区域的最小外接矩形在图像中标出前景和背景区域,再利用GrabCut算法分别对前景和背景建立高斯混合模型,然后通过mincut/maxflow算法分割前景与背景区域,最终实现工件目标的提取.实验结果表明,对于制造商提供的样本,该方法分割工件的召回率和准确率分别为94.97%和88.48%,具有较强的实用性和良好的实时性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号