首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
采用复合式A/O工艺处理城市污水,重点考察了该工艺的硝化性能。试验结果表明,投加悬浮填料能够显著提高活性污泥系统的硝化效果;复合式A/O工艺的硝化效果明显优于投料普通活性污泥法,出水氨氮质量浓度均低于0.5mg/L,完全达到一级A排放标准(GB18918-2002)。  相似文献   

2.
构建以厌氧/好氧/缺氧/快速曝气单元组成的短程硝化同步反硝化除磷工艺,并在常温、低氧条件下用于处理实际城市污水。结果表明,设定水力停留时间(HRT)为9 h,污泥龄为20~25 d,污泥浓度(MLSS)为2 000~4 000 mg/L,且控制好氧1池的溶解氧(DO)浓度为1. 5~2mg/L,好氧2池的DO为0. 5~1 mg/L,并投加氢氧化钠溶液调控好氧池的pH值在8. 5以上,可以实现短程硝化反硝化的快速启动,且出现了反硝化除磷现象,出水水质可达到《城镇污水处理厂污染物排放标准》(GB 18918—2002)的一级B标准。  相似文献   

3.
水解-硝化反硝化二级SBR工艺处理明胶生产废水   总被引:1,自引:0,他引:1  
采用厌氧水解-硝化反硝化二级SBR工艺处理明胶生产废水.结果表明,在进水COD为1 000~1 400 mg/L、TN为117~147 mg/L的情况下,该工艺降解COD及脱氮效果良好;系统出水COD<100 mg/L,达到了《污水综合排放标准》(GB 8978-1996)的一级标准;水解工艺主要完成对进水中有机氮的氨化作用,硝化反硝化SBR可将水解产生的NH3-N全部转化;系统对TN的去除率>80%,出水TN浓度为10~35 mg/L;污泥中CaCO3的少量积累不会影响系统的处理效果及运行的稳定性.  相似文献   

4.
为了解决低碳源污水脱氮效果不佳的问题,挖掘多级A/O工艺强化脱氮的潜力,在小试装置中开展了多级A/O工艺同步硝化反硝化的研究.结果表明,随着DO浓度的升高,同步硝化反硝化率呈现下降的趋势,低DO浓度(0.5 mg/L)下的同步硝化反硝化率高达37.4%.在系统中投加填料之后,系统的同步硝化反硝化脱氮能力得到提升.但是随着DO浓度的升高,填料对同步硝化反硝化的影响逐渐减弱.通过试验,提出了多级A/O工艺在较低溶解氧浓度下的梯级曝气运行控制模式,并确定了最佳运行工况,即各好氧区的最佳DO分别为0.5、1.0、1.5 mg/L,在低曝气能耗下实现了对氨氮的去除与较大程度的同步硝化反硝化.  相似文献   

5.
短程硝化/厌氧氨氧化/全程硝化工艺处理焦化废水   总被引:1,自引:0,他引:1  
通过对短程硝化和厌氧氨氧化工艺的研究,开发了短程硝化/厌氧氨氧化/全程硝化(O1/A/O2)生物脱氮新工艺并用于焦化废水的处理.控制温度为(35±1)℃、DO为2.0~3.0mg/L,第一级好氧连续流生物膜反应器在去除大部分有机污染物的同时还实现了短程硝化.考察了HRT、DO和容积负荷对反应器运行效果的影响.结果表明,当氨氮容积负荷为0.13~0.22gNH4+-N/(L·d)时,连续流反应器能实现短程硝化并有效去除氨氮.通过控制一级好氧反应器的工艺参数,为厌氧反应器实现厌氧氨氧化(ANAMMOX)创造条件.结果表明,在温度为34℃、pH值为7.5~8.5、HRT为33 h的条件下,经过115 d成功启动了厌氧氨氧化反应器.在进水氨氮、亚硝态氮浓度分别为80和90 mg/L左右、总氮负荷为160 mg/(L·d)时,对氨氮和亚硝态氮的去除率最高分别达86%和98%,对总氮的去除率为75%.最后在二级好氧反应器实现氨氮的全程硝化,进一步去除焦化废水中残留的氨氯、亚硝态氮和有机物.O1/A/O2工艺能有效去除焦化废水中的氨氮和有机物等污染物,正常运行条件下的出水氨氮<15 mg/L、亚硝态氮<1.0 mg/L,COD降至124~186 mg/L,出水水质优于A/O生物脱氮工艺的出水水质.  相似文献   

6.
双泥SBR系统的短程硝化反硝化和反硝化除磷研究   总被引:2,自引:0,他引:2  
针对我国中小城镇污水低C/N值的水质特点,考察了双泥法SBR工艺的脱氮除磷效果。结果表明:硝化反应器采用生物膜SBR并控制溶解氧为1.0mg/L进行连续曝气,可以实现短程硝化反硝化;在厌氧/缺氧反应器中,聚磷菌能同时利用硝酸盐和亚硝酸盐为电子受体进行反硝化除磷,从而降低了对有机碳源和溶解氧的需求以及能耗。小试系统对模拟城镇污水中COD、TN、TP的平均去除率分别为94.9%、81.2%、89.5%,出水水质达到了《城镇污水处理厂污染物排放标准》(GB18918—2002)的一级A标准。  相似文献   

7.
为了考察硝化菌包埋载体处理精细化工废水的技术可行性和可靠性并获得工程应用的参数,以A/O工艺中试系统为试验平台,重点研究了硝化菌包埋载体A/O系统在不同负荷下对精细化工废水的处理效果及其影响因素。在载体投加率为8.5%、污泥浓度为3 000 mg/L左右、水温为20℃左右、处理水量为12 m~3/d的条件下,采用已活化的载体处理精细化工废水时出水氨氮在5 mg/L以下,远低于《城镇污水处理厂污染物排放标准》(GB 18918—2002)一级B排放标准,且负荷提高40%后,出水氨氮平均浓度仍能达到一级B标准;与常规水解酸化+A/O工艺相比,中试在水力停留时间仅为常规工艺30%~40%的条件下,对氨氮和COD的去除率均有提高,且出水氨氮浓度明显下降,硝化菌载体工艺表现出了良好的抗负荷冲击性能。  相似文献   

8.
新型短程硝化同步反硝化除磷工艺由厌氧(An)、好氧(O1,O2)、缺氧(A1,A2)、快速曝气(O3) 4个单元组成,在常温条件下可用于处理实际城市污水。在正常运行期间,不用控制进水p H值,且控制好氧1池的溶解氧(DO)浓度为1. 5~2 mg/L、好氧2池的DO浓度为0. 5~1 mg/L时,好氧2池出水亚硝酸盐浓度可以控制在5 mg/L以上,当水力停留时间(HRT)为9 h时,系统对氨氮、COD、总氮和磷酸盐的去除率分别为84. 27%、82. 31%、83. 82%和87. 41%,且出水水质达到《城镇污水处理厂污染物排放标准》(GB 18918—2002)的一级A标准。  相似文献   

9.
生物接触氧化法的同步硝化反硝化影响因素研究   总被引:2,自引:0,他引:2  
研究了生物接触氧化法同步硝化反硝化系统中HRT、DO、COD及生物膜厚度对脱氮效率的影响.结果表明:在DO=2.0 mg/L的条件下,出水COD、TN、NH+4-N值随HRT的增加呈下降趋势,在HRT达到8 h时,出水COD、TN、NH+4-N值趋于稳定,去除率分别为94%、55.9%和73.3%;5-DO为2.0~4.0 mg/L范围内,对TN的去除率随着反应器内DO浓度的降低呈上升趋势,保持较好脱氮率的溶解氧为2.5~3.0 mg/L;进水COD为400 mg/L时,系统对TN、NH+4-N的去除率及容积去除率都处在较高水平,对TN的平均去除率达到60%;生物膜厚度对同步硝化反硝化有较大影响,增加生物膜厚度有利于同步硝化反硝化的进行.  相似文献   

10.
对北方某中型污水处理厂出现的短程硝化反硝化现象进行了分析。该污水厂采用传统活性污泥法工艺,在生化池内DO为0.3~4.5 mg/L、pH值为6.3~8.5的条件下,出水COD、TP、TN、氨氮的平均浓度分别为37.8、0.31、13.4、2.3 mg/L,优于《城镇污水处理厂污染物排放标准》(GB 18918—2002)的一级A标准。在试验监测期间的第45~75天,出水亚硝态氮浓度出现明显的先升高后下降趋势,出水硝态氮浓度出现明显的先降低后升高趋势,由此判断,期间发生了短程硝化反硝化现象。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号