首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Influences of polypropylene (PP) grafted to SiO2 nanoparticles (7 nm) were studied on the crystallization behavior and the mechanical properties of PP/SiO2 nanocomposites. PP for the matrix and grafting was synthesized in order to have an identical primary structure, aiming at their co-crystallization and resulting reinforcement of filler-matrix interfaces. The grafted PP chains improved the dispersion of SiO2, and notably accelerated nucleation in crystallization. It was plausible that the grafted chains whose one chain end was pinned to SiO2 became nuclei of the crystallization (co-crystallization between the matrix and grafted chains), thus directly bridging between the matrix and SiO2 nanoparticles. The Young’s modulus and tensile strength were most improved by the grafted PP chains at low filler contents such as 2.3 wt%, whose origin was attributed to effective load transfer to SiO2 through the co-crystallization-mediated bridging.  相似文献   

3.
For exploring the using of silicate-1 zeolite in dielectric ceramic, SiO2@silicate-1 ceramics were fabricated by combining oxidation-bonding, sol–gel directional infiltration and sintering methods. The resulting samples were analyzed by X-ray diffraction, scanning electron microscope, energy dispersive spectrometer, digital hardness tester and microwave dielectric measurement system. It can be found that silicate-1 particles are well bond by silica sol. And the pores of perform are partially filled with silica. The sintering temperature has great effect on microstructure and properties of SiO2@silicate-1 ceramics. When the ceramic is sintered at 400 and 600 °C, it keeps the MFI-type structure and almost has the same low-dielectric-constant (5.71 and 5.62, respectively). When the ceramic is sintered at 800 and 1000 °C, its MFI-type structure is broken down and its dielectric constant is 7.38 and 6.75, respectively.  相似文献   

4.
Pickering emulsion polymerization has attracted considerable attention in material fabrication due to its unique surfactant-free character and versatile association of oil, water and particles for a large set of materials. In this study, SiO2 modified with Methacryloxypropyltrimethoxysilane (MPTMS) was employed to prepare Pickering emulsion, and subsequently covalently-bonded polystyrene/SiO2(PS/SiO2) composites were synthesized by Oil-in-water Pickering emulsion polymerization. Optical micrograph, contact angle, thermogravimetric analysis (TGA), Fourier transform infrared spectra (FT-IR), scanning electron microscope (SEM) and dynamic laser scattering (DLS) were employed to characterize the modified SiO2, Pickering emulsion and prepared composites. It was found that prepared composites possess ragged surface morphology and SiO2 concentration has an important effect on the morphology of as-prepared composites. In addition, covalent bond between PS core and SiO2 shell was evidenced by FT-IR.  相似文献   

5.
Composites with enhanced hydrophilicity were prepared by adding TiO2 or SiO2 nanoparticles during the in situ polymerization of methyl methacrylate (MMA) in poly(vinylidene fluoride) (PVDF). The hydrophilicities of the PVDF/PMMA/TiO2(SiO2) composites generated in this manner were characterized by contact angle measurements and atomic force microscopy (AFM). The hydrophilicity was dependent on nanoparticle content; it gradually increased with increasing TiO2 (or SiO2) content when the TiO2 (or SiO2) content was no more than 4 wt% of PVDF. A homogeneous dispersion of the TiO2 (or SiO2) nanoparticles in the composite matrix was observed in scanning electron microscope (SEM) images. Based on Fourier transform infrared (FTIR) spectra and wide angle X-ray diffraction (WAXD) analyses, the crystalline phase composition of PVDF was not influenced by the addition of TiO2 (or SiO2); PVDF crystallized predominantly in the α phase after in situ polymerization. Nevertheless, the nanoparticles can promote the formation of the β phase of PVDF in composites; the β-phase content increased with increasing TiO2 content, while it was almost independent of SiO2 content.  相似文献   

6.
TiO2/MoS2 composite was encapsulated by hydrophobic SiO2 nanoparticles using a sol–gel hydrothermal method with methyltriethoxysilane (MTES), titanium tetrachloride (TiCl4), and molybdenum disulfide (MoS2) as raw materials. Then, a novel dual functional composite film with hydrophobicity and photocatalytic activity was fabricated on a glass substrates via the combination of polydimethylsiloxane adhesives and hydrophobic SiO2@(TiO2/MoS2) composite particles. The influence of the mole ratios of MTES to TiO2/MoS2 (M:T) on the wettability and photocatalytic activity of the composite film was discussed. The surface morphology, chemical compositions, and hydrophobicity of the composite film on the glass substrate were investigated by scanning electron microscopy, transmission electron microscopy, X-ray powder diffraction, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, and water contact angle (water CA) measurements. The results indicated that the composite film exhibited stable superhydrophobicity and excellent photocatalytic activity for degradation of methyl orange (MO) even after five continuous cycles of photocatalytic reaction when M/T was 7:1. The water CA and degradation efficiency for MO remained at 154° and 94%, respectively. Further, the composite film showed a good non-sticking characteristic with the water sliding angle (SA) at about 4°. The SiO2@(TiO2/MoS2) composite consisting of hydrophobic SiO2 nanoparticles and TiO2/MoS2 heterostructure could provide synergistic effects for maintaining long-term self-cleaning performance.  相似文献   

7.
Ni/SiC and Ni/SiO2 catalysts prepared by both wet impregnation (WI) and deposition–precipitation (DP) methods were compared for CO and CO2 methanation. The prepared catalysts were characterized using N2 physisorption, temperature-programmed reduction with H2 (H2-TPR), H2 chemisorption, pulsed CO2 chemisorption, temperature-programmed desorption of CO2 (CO2-TPD), transmission electron microscopy, and X-ray diffraction. H2-TPR analysis revealed that the catalysts prepared by DP exhibit stronger interaction between the nickel oxides and support than those prepared by WI. The former catalysts exhibit higher Ni dispersions than the latter. The catalytic activities for both reactions over Ni/SiC and Ni/SiO2 catalysts prepared by WI increase on increasing the Ni content from 10 to 20 wt%. The Ni/SiC catalyst prepared by DP shows higher catalytic activity for CO and CO2 methanation than that of the Ni/SiC catalyst prepared by WI. Furthermore, it exhibits the highest catalytic activity for CO methanation among the tested catalysts. The high Ni dispersion achieved by the DP method and the high thermal conductivity enabled by SiC are beneficial for both CO and CO2 methanation.  相似文献   

8.
9.
The elongational flow properties of TiO2 nanoparticle/polypropylene (PP) nanocomposite fibers were studied via melt spinning. The diameter, tension, and flow rate of fibers were directly measured and used to calculate the apparent elongational viscosity and apparent elongational strain rate using Cogswell’s theory. Thermal gravimetric analysis (TGA) was used to demonstrate that the TiO2 nanoparticles improved the thermal stability of the PP fibers. With a 1–3 wt % loading of the TiO2 nanoparticles, the PP fiber decomposition temperatures ranged from 338 °C for the pristine polymer to 342, 349, and 367 °C; the decomposition was accompamied by an initial 95 wt % weight loss. In addition, the well-distributed morphology of the TiO2 nanoparticles on the side surface of the PP matrix was observed using atomic force microscopy (AFM). At 1 wt % loading of the TiO2 nanoparticles, the surfaces of the PP nanofibers contained mono-disperse nanoparticles with sizes of 20–50 nm. Furthermore, the TiO2 nanoparticle/PP nanocomposite fibers were shown to be thermally stable and are suitable for application as an antibacterial polymer.  相似文献   

10.
Two methods were used to obtain a catalytically active oxide coating on the surface of titanium for the catalytic afterburning of diesel soot: plasma electrochemical formation of an oxide film on the surface of titanium and extraction pyrolytic deposition of the Li2Cu2(MoO4)3 compound. The Li2Cu2(MoO4)3/TiO2 + SiO2/Ti compositions synthesized by the single-step extraction pyrolytic treatment of the oxidized surface of titanium ensured a high burning rate of soot of ∼300°C. The subsequent deposition of Li2Cu2(MoO4)3 lowers the activity of the catalyst, due probably to the growth of molybdate phase crystallites and the filling of open oxide film pores. Double lithium-copper molybdate is able to reduce appreciably the concentration of CO in the oxidation products of soot. The advantages of these methods are the possibility of forming high-cohesion durable coatings on surfaces of any complexity, the simplicity of their implementation, and high productivity and low cost. The obtained results can be recommended for use in developing methods for creating composite coatings on catalytic soot filters.  相似文献   

11.
Cerium oxide is one of the most important rare earth elements that is introduced into glass compositions due to its great effects on the optical properties. CeO2 was introduced in Hench’s patented SiO2-Na2O-CaO-P2O5 glasses with different concentrations in order to study its effect on the optical behavior of this glass including optical band gap, transmittance, reflectance and refractive index and to give a complete view for the optical properties on cerium oxide-doped silicate glasses.  相似文献   

12.
Polypyrrole (PPy) and its composites with vanadium pentoxide (V2O5) were synthesized in aqueous medium by chemical oxidation polymerization using FeCl3·6H2O as an oxidant. The materials were characterized by Fourier transform infrared (FT-IR) spectroscopy, X-ray diffractometry (XRD), thermogravimetry analyzer (TGA), scanning electron microscopy (SEM), energy dispersive X-ray (EDX), UV/visible spectroscopic techniques and LCR-meter. The FT-IR results confirmed the successful synthesis of PPy and PPy/V2O5 composites. The XRD study showed the amorphous and crystalline nature of PPy and PPy/V2O5 composites, respectively. The TGA analysis showed slight increase in the thermal stability of the composites. The SEM data verified the porous nature of PPy and the composites. The UV/visible spectrometry confirmed the doping of PPy in composites. The electrical properties of the materials displayed their semiconducting nature. The resistance of the samples was found to be dependent on temperature and the contents of V2O5 in the composites.  相似文献   

13.
The behavior of a (SiO2)325 nanoparticle constructed by icosahedral packing of identical blocks and subjected to uniform tension has been investigated using the molecular dynamics method. In the nanoparticle, the middle layers are characterized by the largest oscillations of the internal pressure and potential energy. As the strain increases, the number of neighboring silicon ions decreases and reaches a constant value of four at the strain Δl/l = 0.10. With an increase in the strain, the surface tension of the nanoparticle decreases and passes through a minimum at Δl/l = 0.16.  相似文献   

14.

Abstract  

Rhenium sulfide based catalysts were prepared by the incipient wetness impregnation method over alumina and silica supports and evaluated for 4,6-dimethyldibenzothiophene hydrodesulfurization in a high-pressure stirred-tank reactor. The catalyst prepared over silica was about six times more active for hydrodesulfurization than the corresponding catalyst prepared over alumina and a NiMo/Al2O3 industrial reference catalyst. This surprising and positive SiO2 support effect was explained by a metallic character of the supported sulfide, which was demonstrated using a kinetic approach of competitive hydrogenations and by XPS characterization.  相似文献   

15.
This paper presents the direct synthesis of super-low SiO2/Al2O3 ratio zeolite beta molecular sieve through a novel route, by which some of aluminium species are added during crystaling process. The IR results show that with the increase of aluminium content in the framework, the frequency of the band in the range of framework vibration (1060–1090 cm−1) shifts to the lower wave-number; the BET surface-area decreases and the basicity of zeolite becomes stronger. In a second step, new adsorbents were obtained by solid-state ion exchanging zeolite beta with Cu(I), Ag(I) cations. The deep-desulfurization (sulfur levels of <1 ppmw) tests were performed using fixed-bed adsorption technique, the sulfur content of the treated and untreated gasoline was analyzed by microcoulometry. The experimental results show that the desulfurization performance of sorbents decreases in order: Cu(I)beta > Ag(I)beta > Na-beta. The best sorbent, Cu(I)beta, has breakthrough adsorption capacities of 0.236 mmolS/g of sorbent for model gasoline.  相似文献   

16.
The kinetics of crystal nucleation is investigated in sodium calcium silicate glasses of two compositions (22.4 and 24.4 mol % Na2O), which belong to the Na2SiO3—CaSiO3 pseudobinary join and, according to the phase diagram, lie in the region of the formation of solid solutions between the compositions Na2O · 2CaO · 3SiO2 and Na2O · CaO · 2SiO2. The stationary rate of crystal nucleation of Na2O · 2CaO · 3SiO2-based solid solutions is measured as a function of temperature. It is shown that the maximum stationary rate of nucleation increases with an increase in the sodium oxide content in the initial glasses. The experimental data are analyzed in the framework of the classical nucleation theory.Original Russian Text Copyright © 2004 by Fizika i Khimiya Stekla, Soboleva, Yuritsyn, Ugolkov.  相似文献   

17.
PSA [poly-(styrene-methyl acrylic acid)] latex particle has been taken into account as template material in SiO2 hollow spheres preparation. TiO2-doped SiO2 hollow spheres were obtained by using the appropriate amount of Ti(SO4)2 solution on SiO2 hollow spheres. The photodecomposition of the MB (methylene blue) was evaluated on these TiO2-doped SiO2 hollow spheres under UV light irradiation. The catalyst samples were characterized by XRD, UV-DRS, SEM and BET. A TiO2-doped SiO2 hollow sphere has shown higher surface area in comparison with pure TiO2 hollow spheres. The 40 wt% TiO2-doped SiO2 hollow sphere has been found as the most active catalyst compared with the others in the process of photodecomposition of MB (methylene blue). The BET surface area of this sample was found to be 377.6 m2g−1. The photodegradation rate of MB using the TiO2-doped SiO2 catalyst was much higher than that of pure TiO2 hollow spheres.  相似文献   

18.
The composite semiconductor photocatalyst TiO2/SiO2 was prepared by template-hydrothermal method using carbon spheres as the template. The structural and optical properties of TiO2/SiO2 were characterized by XRD, SEM, BET, UV–Vis DRS, TG-DTA, PL techniques. The formation of hydroxyl radical on the surface of TiO2/SiO2 was studied with terephthalic acid as the probe molecule, combined with fluorescence technique. The results showed that the specific surface area of TiO2/SiO2 composite was 327.9 m2/g, and the specific surface area of TiO2/SiO2 was larger than that of pure TiO2. Photocatalytic degradation of rhodamine B showed that TiO2/SiO2 composite oxide under visible light illumination 40 min, the degradation rate was 98.6 % and the degradation rate of pure TiO2 was only 11.9 %. The apparent first-order rate constant of TiO2/SiO2 was 33 times that of pure TiO2 and more than 6 times that of P25 when the molar ratio of Ti to Si was 1:1 under visible light irradiation. Moreover, it’s also as much as 5 times that of pure TiO2 and is more than 1 times that of P25 under UV light irradiation 25 min. Based on the experimental results, ·O2 ? and h+ were suggested to be the major active species which was responsible for the degradation reaction. The increased photocatalytic activity of TiO2/SiO2 may be mainly attributed to effectively suppressing the recombination of hole/electron pairs. After the photocatalyst TiO2/SiO2 was reused 5 times, the degradation rate of rhodamine B could reach 89.2 % under visible light irradiation. Moreover, The composite semiconductor photocatalyst TiO2/SiO2 was selective towards the degradation of rhodamine B.  相似文献   

19.
Nanoparticles of SiO2 or TiO2 have been added in the preparation of heat-resisting concretes of two types. The major technical and chemical characteristics have been determined. Features have been found in some of the technological operations in making the concretes of both types, and also aspects of the physicomechanical properties. Higher chemical stability has been found for heat-resisting concrete containing TiO2 nanoparticles in an NaOH solution.  相似文献   

20.
A series of phosphotungstic acid (HPW)/SiO2 materials with hierarchical meso/macroporous structure were synthesized by evaporation-induced self-assembly method (EISA), using nonionic surfactant (P123) and polystyrene (PS) spheres as templates. SEM images displayed uniform macropores with an average pore size of 210 nm. TEM, small-angle XRD and N2 adsorption–desorption isotherms confirmed the existence of the ordered mesoporous structures, embedded in the wall of macropores. The wild-angle XRD and FT-IR spectra proved Keggin-type HPW dispersed homogeneously in the silica framework. With the amount of added PS spheres, the density of the macropores increased, the hierarchically ordered porous HPW/SiO2 possessed two-dimensional (2D) hexagonal (p6mm) mesostructures and uniform periodic macropores. The ODS catalytic activity of these samples were tested, the result showed that the meso/macroporous HPW/SiO2 catalyst with proper PS beads usage displayed much higher catalytic activity than other catalysts. In addition, the reusability of the meso/macroporous HPW/SiO2 catalyst was investigated, the activity of catalyst has not obviously decreased even after eight times.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号