首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The melt flow behavior of thermoplastic polypropylenenatural rubber blends has been evaluated with specific reference to the effects of blend ratio, extent of dynamic crosslinking of the rubber phase and temperature, on viscosity, flow behavior index, and deformation of the extrudate. The proportion of rubber in the blend and the extent of dynamic crosslinking of the rubber phase were found to have profound influence on the viscosity of the blends at lower shear stresses. But at higher shear stresses, the effect of blend ratio on viscosity was comparatively less for the uncrosslinked blends than that for the crosslinked blends. At lower shear stress, the viscosity of the blend increased with increase in degree of crosslinking but at higher shear stress, the effect of crosslinking on viscosity was found to vary depending on the ratio of the plastic and rubber components in the blend. The deformation of the extrudates was also very much dependent on both blend ratio and degree of crosslinking.  相似文献   

2.
The dynamic viscoelastic properties of uncrosslinked and dynamically crosslinked blends of polypropylene (PP) and ethylene octene copolymer (EOC) were investigated in the melt state to study the mechanism of reinforcement, influence of particle size, and kinetics of modulus recovery. Dynamic vulcanization was performed by coagent assisted peroxide crosslinking system. Addition of peroxide in PP/EOC blend involves two major competing reactions: crosslinking in EOC and degradation of PP by β chain‐scission. In this article, morphological and melt rheological properties of the TPVs were studied with special reference to the effect of mixing protocol. Three different mixing techniques were investigated. They are: (i) conventional or preblending method—melt mixing of PP and EOC followed by dynamic vulcanization (ii) phase mixing method—curative master batch of EOC added on the molten PP (iii) split addition of PP—preblending method followed by addition of half part of PP (dilution procedure). The type of mixing protocol has a significant influence on the rheological behavior. Rheological properties have been evaluated at the processing temperature (180°C) in a Rubber Process Analyzer (RPA 2000). A variety of rheological observations such as Payne effect, modulus recovery and shear rate sensitivity were studied by carrying out frequency and strain amplitude sweeps. POLYM. ENG. SCI., 2010. © 2009 Society of Plastics Engineers  相似文献   

3.
A dynamically photocrosslinked polypropylene (PP)/ethylene–propylene–diene (EPDM) rubber thermoplastic elastomer was prepared by simultaneously exposing the elastomer to UV light while melt‐mixing in the presence of a photoinitiator as well as a crosslinking agent. The effects of dynamic photocrosslinking and blend composition on the mechanical properties, morphological structure, and thermal behavior of PP/EPDM blends were investigated. The results showed that after photocrosslinking, tensile strength, modulus of elasticity, and elongation at break were improved greatly. Moreover, the notched Izod impact strength was obviously enhanced compared with corresponding uncrosslinked blend. Scanning electron microscopy (SEM) morphological analysis showed that for uncrosslinked PP/EPDM blends, the cavitation of EPDM particles was the main toughening mechanism; whereas for dynamically photocrosslinked blends, shear yielding of matrix became the main energy absorption mechanism. The DSC curves showed that for each dynamically photocrosslinked PP/EPDM blend, there was a new smaller melting peak at about 152°C together with a main melting peak at about 166°C. Dynamic mechanical thermal analysis (DMTA) indicated that the compatibility between EPDM and PP was improved by dynamic photocrosslinking. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 3371–3380, 2004  相似文献   

4.
The properties and structure of silane crosslinked polypropylene (PP)/ethylene propylene diene monomer (EPDM) elastomer blends had been carried out. Fourier transform infrared spectroscopy and gel content tests were employed to evaluate the crosslinking reaction of PP/EPDM blends. Crosslinking efficiency of PP/EPDM blends was investigated using thermogravimetric analysis, differential scanning calorimeter, dynamic mechanical analysis, dynamic rheology, and tensile testing. Tanδ curves of silane crosslinked PP/EPDM blends exhibited an obvious “gel point” originated from the formation of dynamic crosslinking network. The blend corresponding to the “gel point” presented comprehensively improved mechanical properties. These results demonstrated that characteristic rheological parameters showed close correlations with key mechanical properties of silane crosslinked PP/EPDM blends. Scanning electron microscopy images illustrated that crosslinking had remarkably changed the morphologies of PP/EPDM blends. The large deformation mechanism of these blends had been suggested.  相似文献   

5.
The structure and properties of polyolefin blends of ethylene–propylene–diene terpolymer (EPDM) and polypropylene were studied. Blends were prepared in a laboratory internal mixer where EPDM was cured with PP under shear with dicumyl peroxide (DCP) at different shear conditions (blend–cure). Blends were also prepared for comparison from EPDM which were dynamically cured in the absence of PP and blended later (cure–blend). The effect of DCP concentration, intensity of the shear mixing, and rubber/plastic composition were studied. In blend–cure, the melt viscosity increased with increasing DCP concentration in blends of 75% EPDM and 25% PP, but it decreased with increasing DCP concentration in blends of 75% PP and 25% EPDM. In cure–blend, however, the melt viscosity increased with increasing DCP concentration for all compositions. The melt viscosity decreased with increasing intensity of the shear mixing presumably due to the formation of the smaller segregated microdomain of the crosslinked EPDM gels in both blend–cure and cure–blend materials. The crystallization rate was higher in EPDM/PP blends than in PP homopolymer. The crystallization rates for various blending conditions were also compared.  相似文献   

6.
A tetra‐component blend, consisting of low‐density polyethylene (LDPE), polyvinyl chloride (PVC), polypropylene (PP), and polystyrene (PS), was studied as a model system of commingled plastic wastes (LDPE/PVC/PP/PS, mass ratio: 70/10/10/10). Effects of chlorinated polyethylene (CPE), ethylene–propylene–diene monomer (EPDM), styrene–butadiene–styrene (SBS), and their mixture (CPE/EPDM/SBS, mass ratio: 2/2/2) on the mechanical properties and morphology of the system were investigated. With addition of several elastomers and their mixture, the tensile strength of the blends decreased slightly, although both the elongation at break and the impact strength increased. Among these elastomers, EPDM exhibited the most significant impact modification effect for the tetra‐component blends. SBS and the mixture have a good phase‐dispersion effect for the tetra‐component blend. By adding a crosslinking agent [dicumyl peroxide (DCP)], the mechanical properties of the tetra‐component blends also increased. When either SBS or the mixture was added to the blend together with DCP, the probability that the crosslinking agent (DCP) would be at the interface improved because of the phase‐dispersion effect of SBS. Therefore, more co‐crosslinked products will form between LDPE and other components. Accordingly, remarkable improvement of the interfacial adhesion and hence the mechanical properties of the tetra‐component blends occurred. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 82: 2947–2952, 2001  相似文献   

7.
The comparison of the mechanical properties between poly(propylene)/ethylene‐propylene‐diene monomer elastomer (PP/EPDM) and poly(propylene)/maleic anhydride‐g‐ethylene‐propylene‐diene monomer [PP/MEPDM (MAH‐g‐EPDM)] showed that the latter blend has noticeably higher Izod impact strength but lower Young's modulus than the former one. Phase morphology of the two blends was examined by dynamic mechanical thermal analysis, indicating that the miscibility of PP/MEPDM was inferior to PP/EPDM. The poor miscibility of PP/MEPDM degrades the nucleation effectiveness of the elastomer on PP. The observations of the impact fracture mode of the two blends and the dispersion state of the elastomers, determined by scanning electron microscopy, showed that PP/EPDM fractured in a brittle mode, whereas PP/MEPDM in a ductile one, and that a finer dispersion of MEPDM was found in the blend PP/MEPDM. These observations indicate that the difference in the dispersion state of elastomer between PP/EPDM and PP/MEPDM results in different fracture modes, and thereby affects the toughness of the two blends. The finer dispersion of MEPDM in the blend of PP/MEPDM was attributed to the part cross‐linking of MEPDM resulting from the grafting reaction of EPDM with maleic anhydride (MAH) in the presence of dicumyl peroxide (DCP). © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 2486–2491, 2002  相似文献   

8.
炭黑对动态硫化POE/PP热塑性弹性体性能的影响   总被引:3,自引:1,他引:2  
周琦  王勇  刘涛  邱桂学 《弹性体》2008,18(1):54-57
采用动态硫化法制备POE/PP共混物,研究了过氧化二异丙苯(DCP)对POE/PP体系熔体流动速率(MFR)和力学性能的影响。交联助剂硫磺(S)的加入有效地提高了交联效果,当m(DCP)/m(S)=2/0.2时,体系的综合力学性能最佳。通过不同加工工艺制备POE/PP/炭黑共混物,并研究了炭黑用量对体系力学性能和老化性能的影响。结果表明,母料法制备的共混物更有利于炭黑的分散,体系性能更好,炭黑的加入使体系的耐热老化性和抗紫外性能明显改善。  相似文献   

9.
Creep response, stress relaxation behavior, and melt rheological study of the shape memory polymer blend based on EOC‐EPDM has been studied in details. In this study, especially the effect of the crosslinks formation in presence of electron beam on the creep response, melt rheological study and stress relaxation behavior has been reported. With increase of electron beam dose, creep response becomes lower and the creep compliance value also comes down. Higher resistance creep response of the radiation crosslinked blends indicates the superior shape recovery behavior of the blends. Stress relaxation behavior of the crosslinked blend also shows the lower decay of stress value with time for higher radiation crosslinked blend. The lower relaxation ratio of the highly radiation crosslinked blend also supports the superior shape recovery behavior of the crosslinked blend. Apart from, melt rheological study shows the higher storage modulus value and higher complex viscosity of the radiation crosslinked blend which also supports the formation of higher crosslinked network structure. Tension set value also clearly indicates the better shape recovery behavior of the crosslinked blend. POLYM. ENG. SCI., 58:876–885, 2018. © 2017 Society of Plastics Engineers  相似文献   

10.
The rheological properties and crystalline structure of the polyolefin ternary blends of EPDM/polypropylene/high density polyethylene were studied. Blends were prepared in a laboratory internal mixer by two different methods. In blend–cure process, blending and curing were performed simultaneously and EPDM was cured by dicumyl peroxide (DCP) in the presence of PP/HDPE under shear. The cure–blend was to cure EPDM alone first under shear (dynamic curing) and then mix the cured EPDM with PP and HDPE. The effect of DCP concentration, intensity of the shear mixing, and the rubber/plastic composition were studied using capillary rheometer and X-ray diffractometer. The PP-rich ternary blends showed the effect of the mechanooxidative degradation of PP by shear and peroxide. The melt viscosity increased with increasing DCP concentration in blends of EPDM-rich compositions. X-ray diffraction studies revealed that the inclusion of 25 wt % of linear EPDM in the PP/HDPE mixture for the PP-rich ternary blends changed the crystal structure of polypropylene component in the ternary blends. However, the dynamic curing did not alter the crystal structure of PP or HDPE in the blends.  相似文献   

11.
The effects of mixing sequence on the dynamic viscoelastic characteristics of peroxide cured polypropylene (PP)/ethylene octene copolymer (EOC) based TPVs were studied both in solid and melt states. When a peroxide is added to PP-EOC blends, two major competing reactions take place simultaneously: crosslinking in the EOC phase and degradation in the PP phase by ß-chain scission. Three different mixing sequences were employed. They are as follows: (a) preblending method—melt mixing of PP and EOC followed by dynamic vulcanization (b) phase mixing method—curative master batch of EOC added in molten PP and (c) split addition method—preblending procedure followed by addition of half part of PP. Solid state viscoelastic properties were studied by using dynamic mechanical thermal analysis (DMTA). Melt state viscoelastic properties were studied by dynamic strain sweep at 180 °C in Rubber Process Analyser (RPA 2000). The results indicate that both solid and melt state viscoelastic characteristics are strongly influenced by sequence of mixing. A good correlation is observed between the particle size of crosslinked EOC and the dynamic storage modulus obtained from the melt rheological experiments. Furthermore, the shortcomings of dynamic mechanical analyses in evaluating the properties of the TPVs are also critically discussed.  相似文献   

12.
The deformation and fracture behavior of several dynamic vulcanizate blends of isotactic polypropylene with ethylene‐propylene‐diene rubber (EPDM) was examined and compared with those of uncrosslinked blends of PP/EPDM. These blends were prepared by melt mixing in an internal mixer at 190°C in a composition range of 10–40 wt % EPDM rubber. The variation in yield stress, the strength of fibrils of the craze, and the number density of the EPDM rubber domains (morphology fixation) that are dominant factors for enhancing interfacial adhesion and toughness in dynamic vulcanizate blends were evaluated. The ductility and toughness of these materials were explained in light of the composition between crack formation and the degree of plastic deformation through crazing and shear yielding. The physicomechanical properties including the hardness, yield stress, Young's modulus, percentage elongation, impact strength, flexural strength, and flexural modulus of dynamic vulcanized blends were found to be consistent and displayed higher values compared with uncrosslinked blends. The nucleation effect of the crosslinked particles and the decrease of crystallinity of the EPDM rubber were also considered to contribute to the improvement in the impact strength. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 78: 2089–2103, 2000  相似文献   

13.
高韧性和高流动性PP/EPDM共混材料的研制   总被引:9,自引:0,他引:9  
顾方明  任俊 《塑料工业》1997,25(6):83-86,91
研究了乙丙橡胶的门尼粘度和结晶性对聚丙烯增韧效果的影响,结果表明,高门尼粘度,部分结晶性橡胶在获得较好韧性的同时不保持较高的刚性,但流动性较差,通过加入HDPE能在复合增韧的同时提高共混物的流动性,添加少量油酸酰胺和硬脂酰胺敢能适当提高共混物的流动性,采用过氧化物降解聚丙烯可以显著提高共混物的流动性,但韧性明显下降,采用可控降解和动态硫化相结合的技术是在得到高韧性,高流动性共混PP的有效途径。  相似文献   

14.
Ethene/propene terpolymers containing either 1‐vinylcylohexene‐4 (VCHen) or vinylcyclohexane (VCHan) as termonomer component were prepared using MAO‐activated rac‐Me2Si(2‐MeBenz[e]Ind)2ZrCl2 (MBI). Propene content was varied between 26 and 72 wt.‐% with less than 1 mol‐% termonomer incorporation. Blends containing 85 vol.‐% isotactic polypropene (i‐PP) and 15 vol.‐% of the two EP terpolymer families were prepared by melt‐compounding in a twin‐screw kneader at 200°C to examine the role of sulfur‐mediated crosslinking of the unsaturated EPDM terpolymer phase in comparison to the corresponding blends containing non‐crosslinked saturated EP/VCHan terpolymers. The observed glass temperature (Tg) depression of the Tg of EP(D)M phases with respect to the Tg of the corresponding bulk EP(D)M was attributed to the presence of thermally induced stresses in both blend systems. Blends of i‐PP with crosslinked EPDM showed smaller Tg depression with respect to those of iPP/EPM blends containing non‐crosslinked EP and EPM dispersed phases. Morphology differences were detected for i‐PP/EPM and dynamically vulcanized i‐PP/EPDM blends by means of atomic force microscopy (AFM). The crosslinked i‐PP/EPDM blends exhibited significantly improved low temperature toughness as compared to the corresponding non‐crosslinked i‐PP/EPM blends. Curing of the EPDM elastomer phase in i‐PP/EPDM (85 vol.‐%/15 vol.‐%) blends afforded significantly improved toughness/stiffness balance and a wider toughness window with respect to the corresponding i‐PP/EPM and i‐PP/EP blends without sulfur‐cured rubber phases.  相似文献   

15.
This article illustrates the influence of co‐monomer content in the ethylene octene copolymer (EOC) on the dry curing process of EOC:PDMS rubber blends. The EOC:PDMS blends were prepared by melt mixing in an internal mixer and crosslinked through electron beam radiation method. During electron beam irradiation both the EOC and PDMS phase gets crosslinked; which is evident from the gel content study. From the rheology analysis, it is understood that the EOC with high octene (co‐monomer) content has better radiation crosslinkability as compared with the EOC with low co‐monomer content. Through radiation crosslinking, the physico‐mechanical properties of the EOC:PDMS system was improved significantly. The tensile strength of high co‐monomer content EOC:PDMS 70:30 blends were drastically improved by 49.5% on irradiation with a dosage of 75 kGy. Morphology study of the EOC:PDMS system were carried out by scanning electron microscopy (SEM) and correlated with the physico‐mechanical properties. The radiation crosslinked blends shows higher volume resistivity, lower dielectric constant, and loss as compared with the uncrosslinked counterparts. POLYM. ENG. SCI., 57:1016–1027, 2017. © 2016 Society of Plastics Engineers  相似文献   

16.
The dynamic vulcanization of reclaimed‐tire rubber (RTR) and homopolypropylene (PP) was performed by melt‐mixing using either a sulfur crosslinking agent, maleic anhydride (MA), dicumyl peroxide (DCP), or the combination of MA and DCP, in two consecutive machines, first a two‐roll mill and then a counterrotating twin‐screw extruder. In the case of applying a sulfur crosslinking agent, it was demonstrated that the RTR/PP blend at the ratio of 30/70 had the highest impact strength. This could be attributed to the limitation of carbon black in the blend. When the combination of MA and DCP was applied, the result was higher impact strength of the blend at the same ratio. This could be attributed to not only the cohesion between the polymer chains in each phase, PP phase and rubber phase, but also the interfacial adhesion between PP and RTR chains in these two phases. For comparison, the GRT/PP blends with and without sulfur crosslinking agent were prepared as well. All these blends showed low impact strength, which was nearly the same as that of PP. The effects of different crosslinking agents on dispersion and distribution of rubber domain size, viscosity, and percentage crystallinity were also studied. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 91: 510–515, 2004  相似文献   

17.
High density polyethylene (HDPE)/ethylene‐vinyl acetate copolymer (EVA) blends with selective crosslinking the EVA phase were prepared and the crystallization, rheological, and mechanical behaviors were studied. Selective crosslinking of EVA component could greatly improve both tensile and impact strengths of the HDPE‐rich blends and influence melting enthalpy at different annealing temperature in successive self‐nucleation and annealing procedure. Dynamic mechanical analysis reveals that glass transition temperatures of both the HDPE and EVA components are lowered upon blending and are raised upon crosslinking. The uncrosslinked HDPE/EVA blends are unstable in the melt and show increment in storage modulus (G′) and decay in loss tangent (tanδ) with annealing time associated with phase coarsening. However, morphology of selectively crosslinked blends in the melt state is highly unstable, characterized by a fast migration of uncrosslinked HDPE component out of the crosslinked EVA phase to the surface resulting in a rapid decay in G′ and an increment in tanδ at the early stage of annealing. POLYM. ENG. SCI., 54:2848–2858, 2014. © 2014 Society of Plastics Engineers  相似文献   

18.
The effects of ultrasonic irradiation on extrusion processing and mechanical properties of polypropylene (PP)/ethylene–propylene–diene terpolymer (EPDM) blends are examined. Results show that appropriate irradiation intensity can prominently decrease die pressure and apparent viscosity of the melt, increase output, as well as increase toughness of PP/EPDM blends without harming rigidity. In case the blends are extruded with ultrasonic irradiation twice, the impact strength of the blend rises sharply at 50–100 W ultrasonic intensity, and amounts to more than 900 J/m, 1.5 times as high as that of blend without ultrasonic irradiation. Scanning electron microscopy observation shows that with ultrasonic irradiation, morphology of uniform dispersed EPDM phase and good adhesion between EPDM and PP matrix was formed in PP/EPDM blend. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 3519–3525, 2003  相似文献   

19.
The tensile properties and morphology of the polyolefin ternary blends of ethylenepropylene–diene terpolymer (EPDM), polypropylene and high density polyethylene were studied. Blends were prepared in a laboratory internal mixer where EPDM was cured in the presence of PP and HDPE under shear with dicumyl peroxide (DCP). For comparison, blends were also prepared from EPDM which was dynamically cured alone and blended with PP and HDPE later (cure–blend). The effect of DCP concentration, intensity of the shear mixing, and rubber/plastics composition was studied. The tensile strength and modulus increased with increasing DCP concentration in the blends of EPDM-rich compositions but decreased with increasing DCP concentration in blends of PP-rich compositions. In the morphological analysis by scanning electron microscopy (SEM), the small amount of EPDM acted as a compatibilizer to HDPE and PP. It was also revealed that the dynamic curing process could reduce the domain size of the crosslinked EPDM phase. When the EPDM forms the matrix, the phase separation effect becomes dominant between the EPDM matrix and PP or HDPE domain due to the crosslinking in the matrix.  相似文献   

20.
Mechanical and tribological behavior of several dynamic vulcanizate blends of polypropylene (PP) with ethylene‐propylene‐diene rubber (EPDM) was examined and compared with those of uncrosslinked blends. Vulcanization was performed using two types of organic peroxides combined with (meth)acrylate coagent. The effect of different types and concentrations of peroxides as crosslinking agents on the properties of the resulting materials were investigated. Dicumyl peroxide (DCP) provides higher reactivity and exhibits nearly the same crosslinking efficiency for both 60/40 and 50/50 blends; almost fully crosslinked samples are obtained if the compound contains 1.0 or 2.0 wt% DCP. These results correlate to the gel content and mechanical properties of our materials. Variation of PP + elastomer ratio does not have a significant influence on friction. From 60/40 group of composites, lower friction values were obtained for samples cured with 0.5 wt% benzoyl peroxide (BP) and 1.0 wt% DCP. The tribological properties of the samples with higher amount of DCP show rubbery rather than a toughened thermoplastic behavior. Wear of the composites decreases with the increasing concentration of the curing agent. Compared to BP, the samples cured with DCP display lower wear. POLYM. COMPOS., 31:1678–1691, 2010. © 2010 Society of Plastics Engineers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号