首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 140 毫秒
1.
采用射频反应磁控溅射法在Pb(Zr0.52Ti0.48)O3(PZT)/Pt/Ti/SiO2/Si基片上制备了ZnO薄膜,利用X线衍射仪(XRD)、原子力显微镜(AFM)、霍尔效应测试系统等对不同退火温度下制备薄膜的结构、形貌及电阻率等进行了分析表征。结果表明,退火温度600℃的ZnO薄膜(002)择优取向较好,晶粒大小均匀,表面平整致密。随着退火温度的增大,电阻率先下降后升高,600℃时ZnO薄膜电阻率达最小。  相似文献   

2.
采用电子束蒸发在n-Si(100)衬底上沉积Ag掺ZnO(ZnO:Ag)薄膜,随后在200 Pa的O<,2>气氛下分别在500、600、700和800℃退火4 h.用X射线衍射(XRD)仪、荧光光谱仪以及Van der Pauw方法测量ZnO:Ag薄膜的结构和光电学性质.结果表明,ZnO:Ag薄膜为多晶结构,且随着退火...  相似文献   

3.
研究了退火处理对ZnO薄膜结晶性能的影响.ZnO薄膜由直流反应磁控溅射技术制得,并在O2气氛中不同温度(200~1000℃)下退火,利用X射线衍射(XRD)、原子力显微镜(AFM)和X射线光电子能谱(XPS)对其结晶性能进行了研究,提出了一个较为完善的ZnO薄膜退火模型.研究表明:热处理可使c轴生长的薄膜取向性增强;随退火温度的升高,薄膜沿c轴的张应力减小,压应力增加;同时晶粒度增大,表面粗糙度也随之增加.在640℃的应力松弛温度(SRT)下,ZnO薄膜具有很好的c轴取向,沿c轴的应力处于松弛状态,晶粒度不大,表面粗糙度较小,此时ZnO薄膜的结晶性能最优.  相似文献   

4.
p-型ZnO材料因在紫外光电器件方面的潜在应用价值而受到人们的广泛关注.采用反应电子束蒸发法在白宝石上生长了ZnO:Ag薄膜,生长温度范围从150~250℃.研究表明:在该温度范围生长的ZnO:Ag薄膜具有n-型导电特征,但通过退火可以实现p-型导电.当退火温度为300℃时,ZnO:Ag薄膜的空穴浓度为2.8×1016cm-3,电阻率为1.0 kΩ·cm,空穴的迁移率为0.22 cm2/V·s.当在350℃下进一步退火,薄膜仍为p-型导电,但空穴浓度减小为2.1×1015cm-3,电阻率增大到5.0 kΩ·cm.通过对ZnO:Ag薄膜的X射线衍射谱分析发现,ZnO:Ag电学性质的变化与薄膜中Ag+替代Zn2+的浓度有关.  相似文献   

5.
采用Zn3N2热氧化法在直流磁控溅射设备上制备了掺氮ZnO薄膜(ZnO:N),研究了不同退火温度对样品结构和光电特性的影响.X射线衍射谱(XRD)结果表明,Zn3N2在600℃以上退火即可转变为ZnO:N薄膜.X射线光电子能谱(XPS)发现,在热氧化法制备的ZnO:N薄膜中,存在两种与N相关的结构,分别是N原子替代O(受主)和N2分子替代O(施主),这两种结构分别于不同的退火温度下存在,并且700℃下退火的样品在理论上具有最高的空穴浓度,这一点也由霍尔测量结果得到证实.同时,从低温PL光谱中观察到了与No受主有关的导带到受主(FA)和施主-受主对(DAP)的跃迁,并由此计算出热氧化法制备的ZnO:N薄膜中的No受主能级位置.  相似文献   

6.
PLD法制备ZnO薄膜的退火特性和蓝光机制研究   总被引:1,自引:0,他引:1  
通过脉冲激光沉积(PLD)方法,在O2中和100~500℃衬底温度下,用粉末靶在Si(111)衬底上制备了ZnO薄膜,在300℃温度下生长的薄膜在400~800℃温度和N2氛围中进行了退火处理,用X射线衍射(XRD)谱、原子力显微镜(AFM)和光致发光(PL)谱表征薄膜的结构和光学特性。XRD谱显示,在生长温度300℃时获得较好的复晶薄膜,在退火温度700℃时获得最好的六方结构的结晶薄膜;AFM显示,在此退火条件下,薄膜表面平整、晶粒均匀;PL谱结果显示,在700℃退火时有最好的光学特性。  相似文献   

7.
利用射频磁控反应溅射技术生长出具有高度晶面(0002)取向的ZnO外延薄膜。通过AFM、XRD、吸收光谱和荧光光谱等测试手段,分别研究分析了不同衬底、不同溅射气氛和退火对ZnO薄膜结构及光学性质的影响。研究表明,在200℃低温生长的硅基ZnO薄膜具有几百纳米的氧化锌准六角结构外形;当氧氩比为4:1(质量流量比)时,吸收谱激子峰最佳;退火后,激子峰(363 nm)加强,同时出现了402 nm的本征氧空位紫光发射。  相似文献   

8.
采用Zn3N2热氧化法在直流磁控溅射设备上制备了掺氮Zn0薄膜(ZnO:N),研究了不同退火温度对样品结构和光电特性的影响.X射线衍射谱(XRD)结果表明,Zn3N2在600℃以上退火即可转变为Zn0:N薄膜.X射线光电子能谱(XPS)发现,在热氧化法制备的ZnO:N薄膜中,存在两种与N相关的结构,分别是N原子替代O(受主)和N2分子替代O(施主),这两种结构分别于不同的退火温度下存在,并且700℃下退火的样品在理论上具有最高的空穴浓度,这一点也由霍尔测量结果得到证实.同时,从低温PL光谱中观察到了与N.受主有关的导带到受主(FA)和施主-受主对(DAP)的跃迁,并由此计算出热氧化法制备的ZnO:N薄膜中的N.受主能级位置.  相似文献   

9.
孙剑  白亦真  谷建峰  刘明  张庆瑜 《半导体光电》2008,29(6):884-887,892
采用磁控溅射在自持CVD金刚石厚膜的成核面上制备了ZnO薄膜,并实验研究了其生长特性和发光特性随温度的变化情况.利用X射线衍射(XRD)仪,光致发光(PL)谱,电子探针(EPMA)和霍尔测量系统对样品进行了检测.SEM结果表明,基片温度为600℃时ZnO薄膜表面粗糙度最低.而PL谱表明基片温度为750℃时ZnO薄膜具有最优的光学性能,此时由EPMA测得的薄膜中Zn/O成分比接近ZnO的化学计量比.霍尔测量表明,样品均呈现出高阻状态,满足声表面波滤波器的制备条件.  相似文献   

10.
采用Zn3N2热氧化法在直流磁控溅射设备上制备了掺氮Zn0薄膜(ZnO:N),研究了不同退火温度对样品结构和光电特性的影响.X射线衍射谱(XRD)结果表明,Zn3N2在600℃以上退火即可转变为Zn0:N薄膜.X射线光电子能谱(XPS)发现,在热氧化法制备的ZnO:N薄膜中,存在两种与N相关的结构,分别是N原子替代O(受主)和N2分子替代O(施主),这两种结构分别于不同的退火温度下存在,并且700℃下退火的样品在理论上具有最高的空穴浓度,这一点也由霍尔测量结果得到证实.同时,从低温PL光谱中观察到了与N.受主有关的导带到受主(FA)和施主-受主对(DAP)的跃迁,并由此计算出热氧化法制备的ZnO:N薄膜中的N.受主能级位置.  相似文献   

11.
The feasibility of a new fabrication route for N and Ga codoped p-type ZnO thin films on glass substrates, consisting of DC sputtering deposition of Zn3N2:Ga precursors followed by in situ oxidation in high purity oxygen, has been studied. The effects of oxidation temperature on the structural, optical and electrical properties of the samples were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), optical transmittance and Hall effect measurements. The results were compared to a control film without Ga. XRD analyses revealed that the Zn3N2 films entirely transformed into ZnO films after annealing Zn3N2 films in oxygen over 500 ℃ for 2 h. Hall effect measurements confirmed p-type conduction in N and Ga codoped ZnO films with a low resistivity of 19.8 Ω·cm, a high hole concentration of 4.6 × 1018 cm-3 and a Hall mobility of 0.7 cm2/(V·s). These results demonstrate a promising approach to fabricate low resistivity p-type ZnO with high hole concentration.  相似文献   

12.
杨永丽  程树英 《半导体学报》2008,29(12):2322-2325
用脉冲电沉积技术,在ITO玻璃基片上制备了SnS:Ag薄膜.用X射线衍射(XRD)和原子力显微镜(AFM)观察了薄膜的物相结构和表面形貌,结果表明SnS:Ag薄膜出现了新物相Ag6SnS6,结晶度好,颗粒度大.用光电流测试研究了其导电性能,表明SnS:Ag薄膜是p型半导体材料.霍尔测量表明掺杂后载流子浓度增大,电阻率降低.  相似文献   

13.
用脉冲激光沉积(PLD)方法在Si(111)和蓝宝石衬底上制备的氧化锌薄膜,在不同的退火温度和不同的退火氛围中进行了退火处理.退火温度及退火氛围对ZnO薄膜的结构和发光特性的影响用X射线衍射(XRD)谱和光致发光谱进行了表征.实验结果表明,随着退火温度的提高,ZnO薄膜的压应力减小,并向张应力转化.在不同的退火温度退火...  相似文献   

14.
杨永丽  程树英 《半导体学报》2008,29(12):2322-2325
用脉冲电沉积技术,在ITO玻璃基片上制备了SnS∶Ag薄膜. 用X射线衍射(XRD)和原子力显微镜(AFM)观察了薄膜的物相结构和表面形貌,结果表明SnS∶Ag薄膜出现了新物相Ag8SnS6,结晶度好,颗粒度大. 用光电流测试研究了其导电性能,表明SnS∶Ag薄膜是p型半导体材料. 霍尔测量表明掺杂后载流子浓度增大,电阻率降低.  相似文献   

15.
采用无机盐溶胶-凝胶方法在载玻片衬底上制备了ZnO:Al薄膜,利用X射线衍射(XRD)、紫外-可见光透射光谱(UV-Vis transmittance spectrum)和扫描电镜(SEM)研究了退火温度和Al3+掺杂浓度对ZnO:Al薄膜结构和光学性能的影响.结果表明,随退火温度的升高或进行适当浓度的Al3+掺杂,可...  相似文献   

16.
ZnO thin films are deposited on Al/Si substrates by the pulsed laser deposition (PLD) method. The XRD and SEM images of films are examined. Highly c-axis oriented ZnO thin films which have uniform compact surface morphology are fabricated. The size of surface grains is about 30 nm. The Schottky barrier ultraviolet detectors with silver Schottky contacts are made on ZnO thin films. The current-voltage characteristics are measured. The ideality contact factor between Ag and ZnO film is 1.22, while the barrier height is 0.908 e V. After annealing at 600 ℃ for 2h, the ideality factor is 1.18 and the barrier height is 0.988 eV. With the illumination of 325 nm wavelength UV-light, the photocurrent-to-dark current ratios before and after annealing are 140.4 and 138.4 biased at 5 V, respectively. The photocurrents increase more than two orders of magnitude over the dark currents.  相似文献   

17.
采用低压化学气相沉积法(LPCVD),分别在n-Si和SiO2衬底上制备Si1-xGex薄膜。Ge的组分比由俄歇电子谱(AES)测定。对n-Si和SiO2衬底上的Si1-xGex分别进行热扩散和热退火处理,以考察热扩散和退火条件对薄膜物理及电学特性的影响。薄膜的物相由X射线衍射(XRD)确定。其薄层电阻、载流子迁移率及浓度分别由四探针法和霍尔效应法测定。基于XRD图谱,根据Scherer公式,估算出平均晶粒大小。数值拟合得到霍尔迁移率与平均晶粒尺寸为近似的线性关系,从而得出LPCVD-Si1-xGex薄膜的电输运特性基本符合Seto模型的结论。  相似文献   

18.
采用直流反应磁控溅射法在Si衬底上引入ZnO缓冲层制备了沿(200)晶面择优取向生长的MgO薄膜,然后分别采用快速退火和常规退火两种不同的方式对MgO薄膜进行晶化处理。利用X射线衍射仪(XRD)以及原子力显微镜(AFM)研究了ZnO缓冲层以及两种不同的退火方式对MgO薄膜的结构和形貌的影响。结果表明:具有合适厚度的ZnO缓冲层可以显著地提高MgO薄膜的结晶质量。另外,与快速退火相比,常规退火处理后得到的MgO晶粒均匀圆润,有着较大的(200)衍射峰强度以及较小的表面粗糙度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号