首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Massive multiple‐input multiple‐output (MIMO) plays a crucial role in realizing the demand for higher data rates and improved quality of service for 5G and beyond communication systems. Reliable detection of transmitted information bits from all the users is one of the challenging tasks for practical implementation of massive‐MIMO systems. The conventional linear detectors such as zero forcing (ZF) and minimum mean square error (MMSE) achieve near‐optimal bit error rate (BER) performance. However, ZF and MMSE require large dimensional matrix inversion which induces high computational complexity for symbol detection in such systems. This motivates for devising alternate low‐complexity near‐optimal detection algorithms for uplink massive‐MIMO systems. In this work, we propose an ordered sequential detection algorithm that exploits the concept of reliability feedback for achieving near‐optimal performance in uplink massive‐MIMO systems. In the proposed algorithm, symbol corresponding to each user is detected in an ordered sequence by canceling the interference from all the other users, followed by reliability feedback‐based decision. Incorporation of the sequence ordering and the reliability feedback‐based decision enhances the interference cancellation, which reduces the error propagation in sequential detection, and thus, improves the BER performance. Simulation results show that the proposed algorithm significantly outperforms recently reported massive‐MIMO detection techniques in terms of BER performance. In addition, the computational complexity of the proposed algorithm is substantially lower than that of the existing algorithms for the same BER. This indicates that the proposed algorithm exhibits a desirable trade‐off between the complexity and the performance for massive‐MIMO systems.  相似文献   

2.
A multiple antenna‐aided, minimum bit error rate–Bell Laboratories‐layered space–time (MBER–BLAST) multiuser detection algorithm is proposed for uplink orthogonal frequency division multiplexing–space division multiple access (OFDM–SDMA) communication to increase the capacity of the system. The proposed algorithm overcomes the limitations of the conventional detectors when the number of users exceed the number of receiver antennas. A particle swarm optimization (PSO) algorithm is employed for finding the optimum weight vectors for MBER detector. PSO is well suited for physically realizable, real‐time applications, where low complexity and fast convergence are of absolute importance, while an optimum maximum likelihood (ML) detection using an exhaustive search method is prohibitively complex. The proposed algorithm outperforms the MBER detector and is capable of achieving performance close to that attained by ML detector at a significantly lower complexity, especially under high user loads. Simulation results show that MBER–BLAST detector promises substantially improved performance compared with the existing systems and offers a good performance–complexity trade‐off. It supports a large number of users by exploiting the capacity advantages of multiple antenna systems in rich scattering environments. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

3.
Multiple-Input Multiple-Output (MIMO) techniques are promising in wireless communication systems for its high spectral efficiency. Sphere Detector (SD) is favoured in MIMO detection to achieve Maximum-Likelihood (ML) performance. In this paper, we proposed a new SD method for MIMO-Orthogonal Frequency Division Multiplexing (OFDM) systems based on IEEE802.11n, which uses Singular Value Decomposition (SVD) in complex domain to reduce the computation complexity. Furthermore, a new Schnorr-Euchner (SE) enumeration algorithm is also discussed in detail. The computer simulation result shows that the computational complexity and the number of visited nodes can be reduced significantly compared with conventional SD detectors with the same Bit Error Rate (BER) performance.  相似文献   

4.
Since H. Yao proposed the lattice reduction (LR)-aided detection algorithm for the MIMO detector, one can exploit the diversity gain provided by the LR method to achieve performance comparable to the maximum likelihood (ML) algorithm but with complexity close to the simple linear detection algorithms such as zero forcing (ZF), minimum mean squared error, and successive interference cancellation, etc. In this paper, in order to reduce the processing time of the LR-aided detector, a graphics processing unit (GPU) has been proposed as the main modem processor in such a way that the detections can be performed in parallel using multiple threads in the GPU. A 2X2 multiple input multiple output (MIMO) WiMAX system has been implemented using a GPU to verify that various MIMO detection algorithms such as ZF, ML, and LR-aided methods can be processed in real-time. From the experimental results, we show that GPUs can realize a 2X2 WiMAX MIMO system adopting an LR-aided detector in real-time. We achieve a processing time of 2.75?ms which meets the downlink duration specification of 3?ms. BER performance of experimental tests also indicates that the LR-aided MIMO detector can fully exploit diversity gain as well as ML detector.  相似文献   

5.
In this paper, with the purpose of integrating the advantages of both the genetic algorithm and the particle swarm optimization, a new genetic particle swarm optimization (GPSO) algorithm is proposed. Furthermore, these three evolutionary algorithms are successfully applied to address the MIMO detection problem. Simulation results reveal that the GPSO‐based detection algorithm takes much less population size and iteration number when compared with the particle swarm optimization‐based detection method and the genetic algorithm‐based detection method. Besides, when compared with the optimal maximum likelihood detection method, the GPSO‐based detection algorithm can strike a much better balance between the BER performance and the computational complexity. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

6.
梁彦  何雪云  韩逸婕 《电视技术》2018,(2):34-38,82
随着通信技术的不断发展,人们对通信速率的要求越来越高,大规模MIMO(Multiple-Input Multiple-Output)技术因其能够大大提高系统的频谱效率,成为通信技术领域的研究热点.在大规模空间调制MIMO中,原本最佳的检测方法——最大似然(Maximum likelihood,ML)检测算法由于算法复杂度过高,不再适用.而适用于小规模空间调制MIMO系统的低复杂度的检测算法在大规模系统中性能会很差.本文利用空间调制信号的结构化稀疏性,提出了基于分布式压缩感知(Distributed Compressed Sensing,DCS)的信号检测算法,同时参照已有文献,利用分组传输和信号交织来进一步提高信号检测性能.最后我们通过仿真验证了此方案能够较好地逼近最大似然检测算法性能.  相似文献   

7.
FSO MIMO系统中分层空时码检测算法   总被引:1,自引:0,他引:1       下载免费PDF全文
多输入多输出(MIMO)系统可以有效提高频谱效率和系统容量。基于MIMO系统重点研究了无线光通信垂直分层空时系统(V-BLAST)检测算法。首先分析了最大似然、线性迫零、最小均方误差以及排序干扰抵消等典型的传统检测算法,基于OOK调制和4PPM调制对采用不同检测算法的系统差错性能进行了仿真对比,最后对Turbo码与BLAST技术相结合构成的新系统采用了软输入软输出(SISO)迭代检测译码方案。仿真结果表明,分层空时检测算法中性能最优的是ML,其次是SISO-MAP,ZF算法性能最差;Turbo-BLAST系统可以有效提高无线光通信系统的抗干扰性能。  相似文献   

8.
In this paper, a simplified maximum likelihood (ML) detector is proposed for multi-input multi-output (MIMO) systems over the Rayleigh flat-fading channels. The main idea of the proposed method is to pre-construct a reduced-size searching set for the optimal ML detection to reduce its computational load without significant performance loss. This can be done by a two-stage searching algorithm combined with the ordered successive interference cancellation scheme. Computer simulations show that with an adequate size of searching set, the proposed simplified ML detection can outperform the conventional MIMO detectors and achieve the same performance as that of the optimal ML detection.  相似文献   

9.
分层空时编码(BLAST)虽然具有极高的频谱效率,能成倍提高光通信系统的信息传输速率,但BLAST系统的误码率较大,严重影响了光通信系统的可靠性。在描述了湍流信道中多输入多输出(MIMO)系统的信道模型后,针对多进制脉冲位置调制(Q-PPM)技术,推导出了采用线性译码算法时分层空时码的极大似然判决准则及其误码率公式,并比较了最大似然译码算法、线性译码算法、串行干扰消除译码算法的误码性能。最后,利用仿真实验进行了验证。结果表明:在自由空间光通信(FSO)中,串行干扰消除译码算法的误码性能更接近最大似然译码算法的性能,明显优于线性译码算法。在4×4系统中,当误比特率为2×10-2时,相对于最小均方误差(MMSE)译码算法,最大似然译码算法和MMSE-SIC译码算法的信噪比分别改善了约14.5 dB和7 dB。理论分析与实验结果相一致。  相似文献   

10.
在MIMO信号检测中,采用最大似然算法可以使系统的误码率最低,但最大似然算法要搜索整个信号空间,计算速度相当慢。球形译码算法性能最接近最大似然算法,它通过减少需要比较的信号点可大大降低计算量。提出了动态分组的球形译码算法,对传统球形译码算法进行了改进。仿真结果表明,所提算法可以根据M IMO系统的需要进行动态调整,可在小信噪比时降低误码率,大信噪比时提高译码速率。  相似文献   

11.
Space division multiple access – orthogonal frequency division multiplexing-based wireless communication has the potential to offer high-spectral efficiency, system performance and capacity. This article proposes an efficient blind multiuser detection (MUD) scheme using artificial neural network models such as the radial basis function. The proposed MUD technique is consistently outperforming the existing minimum mean square error and minimum bit error rate (MBER) MUDs with the performance close to the optimal maximum likelihood (ML) detector. Besides that, the computational complexity of the proposed one is comparatively lower than both the MBER and ML detectors. Further, it can also outperform MBER MUD in the overload scenario, where the number of users is more than that of the number of receiving antennas simulation-based study showing BER performance and complexity are carried out to prove the efficiency of the proposed techniques. This analysis is carried through the IEEE 802.11n standard channel models, which are designed for indoor wireless local area network applications of bandwidth up to 100?MHz at frequencies 2 and 5?GHz.  相似文献   

12.
MMSE准则下近似最优MIMO分组并行检测算法   总被引:2,自引:0,他引:2       下载免费PDF全文
芮国胜  张海波  田文飚  张洋  邓兵  李廷军 《电子学报》2013,41(10):1881-1887
在采用多天线高阶QAM的MIMO通信系统中,现有基于信道分组并行检测算法虽然接近最优检测性能但以牺牲计算效率为代价.针对这一问题,本文提出一种MMSE准则下基于信道分组的并行检测算法,不但有效降低计算复杂度,而且仍保证检测性能.该算法采用MMSE准则下格归约算法改进分组后条件较好子信道矩阵特性,并在消除参考信号基础上利用改进的子信道矩阵对剩余信号以非线性方式进行检测.仿真结果表明:对4×4和6×6MIMO系统,该算法检测性能达到最优,对于8×8 MIMO系统,比最优算法所需信噪比提高约1dB.复杂度分析表明:相比现有信道分组检测算法,相同检测性能下该算法在6×6 MIMO系统中复杂度降低90%以上,在8×8 MIMO系统中复杂度降低98%以上.  相似文献   

13.
Multiple-input multiple-output (MIMO) wireless is an enabling technology for high spectral efficiency and has been adopted in many modern wireless communication standards, such as 3GPP-LTE and IEEE 802.11n. However, (optimal) maximum a-posteriori (MAP) detection suffers from excessively high computational complexity, which prevents its deployment in practical systems. Hence, many algorithms have been proposed in the literature that trade-off performance versus detection complexity. In this paper, we propose a flexible N-Way MIMO detector that achieves excellent error-rate performance and high throughput on graphics processing units (GPUs). The proposed detector includes the required QR decomposition step and a tree-search detector, which exploits the massive parallelism available in GPUs. The proposed algorithm performs multiple tree searches in parallel, which leads to excellent error-rate performance at low computational complexity on different GPU architectures, such as Nvidia Fermi and Kepler. We highlight the flexibility of the proposed detector and demonstrate that it achieves higher throughput than existing GPU-based MIMO detectors while achieving the same or better error-rate performance.  相似文献   

14.
In this paper, we present an efficient evolutionary algorithm for the multi-user detection (MUD) problem in direct sequence-code division multiple access (DS-CDMA) communication systems. The optimum detector for MUD is the maximum likelihood (ML) detector, but its complexity is very high and involves an exhaustive search to reach the best fitness of transmitted and received data. Thus, there has been considerable interest in suboptimal multiuser detectors with less complexity and reasonable performance. The proposed algorithm is a combination of adaptive LMS Algorithm and modified genetic algorithm (GA). Indeed the LMS algorithm provides a good initial response for GA, and GA will be applied for this response to reach the best answer. The proposed GA reduces the dimension of the search space and provides a suitable framework for future extension to other optimization algorithms. Our algorithm is compared to ML detector, Matched Filter (MF) detector, conventional detector with GA; and Adaptive LMS detector which have been used for MUD in DS-CDMA. Simulation results show that the performance of this algorithm is close to the optimal detector with very low complexity, and it works better in comparison to other algorithms.  相似文献   

15.
A novel multiuser code division multiple access (CDMA) receiver based on genetic algorithms is considered, which jointly estimates the transmitted symbols and fading channel coefficients of all the users. Using exhaustive search, the maximum likelihood (ML) receiver in synchronous CDMA systems has a computational complexity that is exponentially increasing with the number of users and, hence, is not a viable detection solution. Genetic algorithms (GAs) are well known for their robustness in solving complex optimization problems. Based on the ML rule, GAs are developed in order to jointly estimate the users' channel impulse response coefficients as well as the differentially encoded transmitted bit sequences on the basis of the statistics provided by a bank of matched filters at the receiver. Using computer simulations, we showed that the proposed receiver can achieve a near-optimum bit-error-rate (BER) performance upon assuming perfect channel estimation at a significantly lower computational complexity than that required by the ML optimum multiuser detector. Furthermore, channel estimation can be performed jointly with symbol detection without incurring any additional computational complexity and without requiring training symbols. Hence, our proposed joint channel estimator and symbol detector is capable of offering a higher throughput and a shorter detection delay than that of explicitly trained CDMA multiuser detectors  相似文献   

16.
It is well known that suboptimal detection schemes for multiple-input multiple-output (MIMO) spatial multiplexing systems (equalization-based schemes as well as ing-and-cancelling schemes) are unable to exploit all of the available diversity, and thus, their performance is inferior to ML detection. Motivated by experimental evidence that this inferior performance is primarily caused by the inability of suboptimal schemes to deal with "bad" (i.e., poorly conditioned) channel realizations, we study the decision regions of suboptimal schemes for bad channels. Based on a simplified model for bad channels, we then develop two computationally efficient detection algorithms that are robust to bad channels. In particular, the novel sphere-projection algorithm (SPA) is a simple add-on to standard suboptimal detectors that is able to achieve near-ML performance and significantly increased diversity gains. The SPA's computational complexity is comparable with that of ing-and-cancelling detectors and only a fraction of that of the Fincke-Phost sphere-decoding algorithm for ML detection.  相似文献   

17.
The paper discusses a sequence detector based on univariate marginal distribution algorithm (UMDA) that jointly estimates the symbols transmitted in a multiple input multiple output (MIMO) communication system. While an optimal maximum likelihood detection using an exhaustive search method is prohibitively complex, it has been shown that sphere decoder (SD) achieves the optimal bit error rate (BER) performance with polynomial time complexity for smaller array sizes. However, the worst‐case complexity of SD is exponential in the problem dimensions, this brings in question its practical implementation for larger number of spatial layers and for higher‐order signal constellation. The proposed detector shows promising results for this overly difficult and complicated operating environment, confirmed through simulation results. A performance comparison of the UMDA detector with SD is presented for higher‐order complex MIMO architectures with limited average transmit power. The proposed detector achieves substantial performance gain for higher‐order systems attaining a near optimal BER performance with reduced computational complexity as compared with SD. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

18.
In this letter, we propose a simplified adaptive modulation algorithm for a multiple input multiple output (MIMO) system with a maximum likelihood (ML) receiver to minimize BER under a fixed data rate. The proposed algorithm has the advantages of good system performance and low computational complexity, when compared to previous algorithms.  相似文献   

19.
刘文龙  裴莹莹  金明录 《信号处理》2013,29(10):1315-1322
在BPSK调制下,基于最大似然(Maximum Likelihood,ML)准则的MIMO检测器是一个二进制二次规划问题,其计算复杂度随着天线数的增多呈指数增加,当天线数较多时,其计算量太大,无法满足实时通信的要求。本文提出了一种新的MIMO检测算法。使用新算法,可以在很小的计算开销下,求解出ML检测器的部分全局最优解,然后,将优先检测出的部分最优解从原二进制二次规划问题中剔除得到一个相对小规模问题,最后使用传统的次最优检测算法对该小规模问题进行求解。这样,新算法不仅可以得到比传统的次最优检测器更低的误码率,计算量又远小于ML最优检测器。本文的仿真结果验证了新算法的有效性。   相似文献   

20.
The maximum-likelihood (ML) multiuser detector is well known to exhibit better bit-error-rate (BER) performance than many other multiuser detectors. Unfortunately, ML detection (MLD) is a nondeterministic polynomial-time hard (NP-hard) problem, for which there is no known algorithm that can find the optimal solution with polynomial-time complexity (in the number of users). A polynomial-time approximation method called semi-definite (SD) relaxation is applied to the MLD problem with antipodal data transmission. SD relaxation is an accurate approximation method for certain NP-hard problems. The SD relaxation ML (SDR-ML) detector is efficient in that its complexity is of the order of K3.5, where K is the number of users. We illustrate the potential of the SDR-ML detector by showing that some existing detectors, such as the decorrelator and the linear-minimum-mean-square-error detector, can be interpreted as degenerate forms of the SDR-ML detector. Simulation results indicate that the BER performance of the SDR-ML detector is better than that of these existing detectors and is close to that of the true ML detector, even when the cross-correlations between users are strong or the near-far effect is significant  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号