首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper presents a noncertainty equivalent adaptive motion control scheme for robot manipulators in the absence of link velocity measurements. A new output feedback adaptation algorithm, based on the attractive manifold design approach, is developed. A proportional-integral adaptation is selected for the adaptive parameter estimator to strengthen the passivity of the system. In order to relieve velocity measurements, an observer is designed to estimate the velocities. The controller guarantees semiglobal asymptotic motion tracking and velocity estimation, as well as L and L2 bounded parameter estimation error. The effectiveness of the proposed controller is verified by simulations for a two-link robot manipulator and a four-bar linkage. The results are further compared with the earlier certainty-equivalent adaptive partial and full state feedback controller to highlight potential closed-loop performance improvements.  相似文献   

2.
In this paper, we propose a new robust output feedback control approach for flexible-joint electrically driven (FJED) robots via the observer dynamic surface design technique. The proposed method only requires position measurements of the FJED robots. To estimate the link and actuator velocity information of the FJED robots with model uncertainties, we develop an adaptive observer using self-recurrent wavelet neural networks (SRWNNs). The SRWNNs are used to approximate model uncertainties in both robot (link) dynamics and actuator dynamics, and all their weights are trained online. Based on the designed observer, the link position tracking controller using the estimated states is induced from the dynamic surface design procedure. Therefore, the proposed controller can be designed more simply than the observer backstepping controller. From the Lyapunov stability analysis, it is shown that all signals in a closed-loop adaptive system are uniformly ultimately bounded. Finally, the simulation results on a three-link FJED robot are presented to validate the good position tracking performance and robustness of the proposed control system against payload uncertainties and external disturbances.  相似文献   

3.
针对柔性关节机器人在非完全状态反馈条件下的轨迹跟踪控制问题,本文提出一种基于虚拟分解控制(virtual decomposition control,VDC)理论和扩展卡尔曼滤波(extended Kalman filtering,EKF)观测的控制方法.首先,考虑模型参数的不确定性和外界扰动因素,分别设计刚性连杆子系统和柔性关节子系统的虚拟分解控制律.然后,为突破现有VDC方法依赖于全状态反馈测量的局限,设计一种基于EKF的间接状态观测器,实现了仅需电机侧位置和速度测量而不需连杆侧任何状态信息测量的闭环控制.此外,结合虚拟稳定和李雅普诺夫稳定理论给出了严格的系统稳定性证明.最后,实例对比仿真验证了所提出控制算法的有效性,且相比于基于传统拉格朗日整体动力学的典型算法,具有更优的轨迹跟踪性能.  相似文献   

4.
In this research, a novel extension of the passivity‐based output feedback trajectory tracking controller is developed for internally damped Euler‐Lagrange systems with input saturation. Compared with the previous output feedback controllers, this new design of a combined adaptive controller‐observer system will reduce the risk of actuator saturation effectively via generalized saturation functions. Semi‐global uniform ultimate boundedness stability of the tracking errors and state estimation errors is guaranteed by Lyapunov stability analysis. An application of the proposed saturated output feedback controller is the stabilization of a nonholonomic wheeled mobile robot with saturated actuators towards desired trajectories. Simulation results are provided to illustrate the efficiency of the proposed controller in dealing with the actuator saturation.  相似文献   

5.
This paper investigates the fuzzy control problem of a class of nonlinear continuous-time stochastic systems with achieving the passivity performance. A model-based observer feedback fuzzy control utilizing the concept of so-called parallel distributed compensation (PDC) is employed to stabilize the class of nonlinear stochastic systems that are represented by the Takagi-Sugeno (T-S) fuzzy models. Based on the Lyapunov criteria, the Linear Matrix Inequality (LMI) technique is used to synthesize the observer feedback fuzzy controller design such that the closed-loop system satisfies stability and passivity constraints, simultaneously. Finally, a numerical example is given to demonstrate the applicability and effectiveness of the proposed design method.  相似文献   

6.
基于观测器的机械手神经网络自适应控制   总被引:3,自引:0,他引:3  
提出了一种基于观测器的机械手神经网络自适应轨迹跟随控制器设计方法,这里机 械手的动力学非线性假设是未知的,并且假设机械手仅有关节角位置测量.文中采用一个线 性观测器重构机械手的关节角速度,用神经网络逼近修正的机械手动力学非线性,改进系统 的跟随性能.基于观测器的神经网络自适应控制器能够保证机械手角跟随误差和观测误差的 一致终结有界性以及神经网络权值的有界性,最后给出了机械手神经网络自适应控制器-观 测器设计的主要理论结果,并通过数字仿真验证了所提方法的性能.  相似文献   

7.
In this paper, an adaptive neural output feedback control scheme based on backstepping technique and dynamic surface control (DSC) approach is developed to solve the tracking control problem for a class of nonlinear systems with unmeasurable states. Firstly, a nonlinear state observer is designed to estimate the unmeasurable states. Secondly, in the controller design process, radial basis function neural networks (RBFNNs) are utilised to approximate the unknown nonlinear functions, and then a novel adaptive neural output feedback tracking control scheme is developed via backstepping technique and DSC approach. It is shown that the proposed controller ensures that all signals of the closed-loop system remain bounded and the tracking error converges to a small neighbourhood around the origin. Finally, two numerical examples and one realistic example are given to illustrate the effectiveness of the proposed design approach.  相似文献   

8.
针对修正罗德里格参数描述的航天器姿态运动模型,利用扩张状态观测器(ESO)研究无角速度测量下的无源姿态跟踪控制问题.首先,为了削弱常值增益ESO中的峰化现象,设计一种时变增益ESO对角速度和系统的总干扰进行估计;进一步考虑航天器姿态运动的无源特性,结合互连和阻尼分配无源控制(IDA-PBC)理论及backstepping思想设计跟踪控制律;最后,从理论上对闭环系统的稳定性进行严格证明.仿真结果验证了所提出控制方法的有效性.  相似文献   

9.
10.
This paper studies finite-time attitude tracking control problem of a rigid spacecraft system with external disturbances and inertia uncertainties. Firstly, a new finite-time attitude tracking control law is designed using nonsingular terminal sliding mode concepts. In the absence and presence of external disturbances and inertia uncertainties, this controller can drive the attitude and angular velocity tracking errors to reach zero in finite time. Secondly, a finite-time disturbance observer is introduced to estimate the disturbance, and a composite controller is developed which consists of a feedback control based on nonsingular terminal sliding mode method and compensation term based on finite-time disturbance observer. Finite-time convergence of attitude tracking errors and the stability of the closed-loop system is ensured by the Lyapunov approach. Numerical simulations on attitude control of spacecraft are also given to demonstrate the performance of the proposed controllers.  相似文献   

11.
Adaptive output control of a class of uncertain chaotic systems   总被引:2,自引:0,他引:2  
In this paper, a new observer-based backstepping output control scheme is proposed for stabilizing and controlling a class of uncertain chaotic systems. The controller is designed through the use of a robust observer and backstepping technique. We firstly show that many chaotic systems as paradigms in the research of chaos can be transformed into a class of nonlinear systems in the feedback form. Secondly, the synchronization problem is converted to the tracking problem from control theory, thereby leading to the use of state observer design techniques. A new observer is utilized to estimate the unmeasured states. Unlike some existing methods for chaos control, no priori knowledge on the system parameters is required and only the output signal is available for control purpose. The Lyapunov functions are quadratic in the state estimates, the observer errors and the parameter estimation error based on the backstepping technique. It is shown that not only global stability is guaranteed by the proposed controller, but also both transient and asymptotic tracking performances are quantified as explicit functions of the design parameters so that designers can tune the design parameters in an explicit way to obtain the desired closed-loop behavior.  相似文献   

12.
本文针对线性不确定性系统, 给出了部分状态反馈直接模型参考自适应控制设计方案以及详细的系统稳 定性、输出跟踪性能分析. 控制器设计基于降维观测器和参数化方法. 此方案采用反馈控制, 反馈信号不仅仅依赖 全状态信息或者输出信号, 而是任意不超过系统维数的可测信号. 因此, 部分状态反馈控制是包含状态反馈、输出 反馈控制的新的控制方案, 缓解了状态反馈对状态信息的限制, 降低了输出反馈控制结构的复杂性. 通过引入辅助 信号, 本文证明了输出匹配条件的存在性、所有闭环系统信号的有界性以及渐近输出跟踪性能. 仿真结果验证了该 方案的有效性.  相似文献   

13.
李颖  曾建平 《控制与决策》2023,38(6):1611-1619
考虑一类受到外部扰动影响的多项式系统在状态不完全可测情况下的H输出跟踪控制问题.首先,综合前馈-反馈复合控制思想,设计基于观测器的输出跟踪控制器,其中反馈镇定控制器用于保证闭环系统稳定,前馈补偿控制器用以实现对参考模型输出信号的跟踪;然后,提出具有输出反馈结构的跟踪控制方法,其优势在于实现了分离原则,可单独设计观测器和控制器,降低计算复杂度;接着,利用依赖全状态的齐次多项式Lyapunov函数导出使得闭环系统渐近稳定且满足H跟踪性能的充分条件,借助多项式平方和凸优化技术可直接求得相应的观测器和控制器;最后,通过数值仿真实例验证所提出设计方法的有效性和优越性.  相似文献   

14.
This paper addresses the output feedback tracking control of a class of multiple‐input and multiple‐output nonlinear systems subject to time‐varying input delay and additive bounded disturbances. Based on the backstepping design approach, an output feedback robust controller is proposed by integrating an extended state observer and a novel robust controller, which uses a desired trajectory‐based feedforward term to achieve an improved model compensation and a robust delay compensation feedback term based on the finite integral of the past control values to compensate for the time‐varying input delay. The extended state observer can simultaneously estimate the unmeasurable system states and the additive disturbances only with the output measurement and delayed control input. The proposed controller theoretically guarantees prescribed transient performance and steady‐state tracking accuracy in spite of the presence of time‐varying input delay and additive bounded disturbances based on Lyapunov stability analysis by using a Lyapunov‐Krasovskii functional. A specific study on a 2‐link robot manipulator is performed; based on the system model and the proposed design procedure, a suitable controller is developed, and comparative simulation results are obtained to demonstrate the effectiveness of the developed control scheme.  相似文献   

15.
By using a state observer, a new robust trajectory tracking control scheme is developed in this paper for electrically driven robot manipulators. The role of the observer is to estimate joint angular velocities. The proposed controller does not employ adaptation, but assures robust stability of tracking error between joint angles and desired trajectories. At sacrificing asymptotical stability of the tracking errors, the configuration of the proposed controller becomes very simple, compared with regressor-based adaptive controllers. It is shown in the closed-loop system using the proposed controller that the Euclidian norm of tracking errors arrives at any small closed region with any convergent rate by setting only one design parameter. Especially for the desired trajectories converging to constant ultimate values, it is assured that tracking errors converge to zero.  相似文献   

16.
随着六足机器人研究工作的深入,针对其遥操作系统的开发面临诸多挑战.为了弥补松软接触条件对系统可控性及稳定性的影响,提出一种基于时域无源性控制(time-domain passivity control,TDPC)的六足机器人双边触觉遥操作方法.其主从两端采取位置-速度的交互模式,通过分析足-地柔性接触的作用机理,构建无源观测器和无源控制律以补偿足底滑移所导致环境系统的潜在有源性,采用速度跟踪模式设计基于触觉力反馈的系统控制架构,并利用Llewellyn准则确定控制律参数的稳定范围.最后,搭建半物理仿真实验平台并验证所提出的双边触觉遥操作方法在松软地形条件下能够保证六足机器人遥操作系统的稳定,且兼具较好的持续跟踪能力.  相似文献   

17.

In this paper, we investigate the state estimation, unknown input and measurement noise reconstruction problems and the feedback controller design issues for a linear discrete-time system with both unknown inputs and measurement noises. First, an augmented system is constructed and the state vector of the augmented system consists of the original system state and the measurement noise, and the preconditions between the original system and the augmented system is discussed in detail. Second, for the augmented system, a reduced-order observer is designed so that the original system state estimates and the measurement noise reconstruction can be obtained. Third, in order to get the asymptotical unknown input reconstruction, an interval observer for part of the measurable output is proposed and an unknown input reconstruction method based on the interval observer is developed. Finally, an observer-based state feedback and unknown input controller is designed and the closed-loop system stability is analyzed. We point out that the closed-loop system satisfies the so-called separation property. At last, two simulation examples are given to verify the effectiveness of the proposed methods.

  相似文献   

18.
We propose a new robust trajectory tracking control scheme for wheeled mobile robots without longitudinal velocity measurements. In the proposed controller, a velocity observer is used to estimate the longitudinal velocity of a wheeled mobile robot. A wheeled mobile robot model, including motor dynamics, is used to develop the controller. The developed controller has the following useful properties. (1) The developed controller does not require any accurate knowledge of the robot parameters or the motor parameters. Even if there are uncertainties in the robot dynamics, including the motor properties, it is certain that tracking errors ultimately become uniformly bounded in a closed-loop system using the developed controller. (2) It is shown theoretically that the ultimate norms of tracking errors can easily be reduced by setting only one design parameter.  相似文献   

19.
马书根  赵珈靓  任超 《控制与决策》2018,33(6):1081-1086
针对全方位移动机器人轨迹跟踪控制中存在的外界干扰和系统参数不确定性问题,提出基于无源性的自抗扰控制方法.该方法通过扩张状态观测器对系统扰动进行估计,并在基于无源性的控制器中加入扰动补偿项以减小外界干扰和参数不确定性对系统的影响;进而,利用系统的无源特性和Lyapunov 理论证明在该控制器作用下闭环系统有界输入有界输出稳定.仿真结果表明,所提出的控制方法响应速度较快,控制精度较高,对系统外扰和模型参数不确定性具有较强的鲁棒性  相似文献   

20.
A linear output feedback controller is developed for trajectory tracking problems defined on a modified version of Chua's circuit. The circuit modification considers the introduction of a flat input, i.e. a suitable external control input channel guided by (a) the induction of the flatness property on a measurable output signal of the circuit and (b) the physical viability of the control input. A linear active disturbance rejection control based on a high-gain linear disturbance observer, is implemented on a laboratory prototype. We show that the state-dependent disturbance can be approximately, but arbitrarily closely, estimated through a linear high-gain observer, called a generalised proportional integral (GPI) observer, which contains a linear combination of a sufficient number of extra iterated integrals of the output estimation error. Experimental results are presented in the output reference trajectory tracking of a signal generated by an unrelated chaotic system of the Lorenz type. Laboratory experiments illustrate the proposed linear methodology for effectively controlling chaos.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号