首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到9条相似文献,搜索用时 0 毫秒
1.
A novel fuzzy dynamical system approach to the control design of flexible joint manipulators with mismatched uncertainty is proposed. Uncertainties of the system are assumed to lie within prescribed fuzzy sets. The desired system performance includes a deterministic phase and a fuzzy phase. First, by creatively implanting a fictitious control, a robust control scheme is constructed to render the system uniformly bounded and uniformly ultimately bounded. Both the manipulator modelling and control scheme are deterministic and not IF-THEN heuristic rules-based. Next, a fuzzy-based performance index is proposed. An optimal design problem for a control design parameter is formulated as a constrained optimisation problem. The global solution to this problem can be obtained from solving two quartic equations. The fuzzy dynamical system approach is systematic and is able to assure the deterministic performance as well as to minimise the fuzzy performance index.  相似文献   

2.
Kinematic and dynamic analysis of a parallel robot consisting of three planarly actuated links, is presented in this paper. Coordinated motion of three planar motors, connected to three fixed-length links, produces a six-degrees-of-freedom motion of an output link. Its extremely simple design along with much larger work volume than the commonly used parallel robots make this high performance-to-simplicity ratio robot very attractive. Experimental model verifies the unique combination of large work volume and high accuracy of this robot.  相似文献   

3.
The Wiener–Kolmogorov theory of filtering has been with us since the first half of the twentieth century. A later matrix-based approach which was more general was derived with the steady-state Kalman filter. This approach uses a novel method of representing causal and uncausal systems in the form of convolution matrices and leads to a Wiener solution which is much easier to calculate than either the Kalman or Wiener approaches. For coloured additive noise, it avoids the use of Diophantine equations. The key idea missing in previous work is the close link between polynomials and Toeplitz matrices which are lower triangular in form. There is already a reasonably sized literature in the mathematics field on such matrices and so the area is ripe for exploration. Although the method does not offer a different or better solution, it shows a completely new way of defining linear time-invariant (LTI) systems which is neither transfer-function nor state-space-based. This is achieved by exploiting the connection between polynomials and Toeplitz matrices. The application here is the Wiener filter but there could well be many more as this is a generic approach.  相似文献   

4.
This paper presents a set of new centralized algorithms for estimating the state of linear dynamic Multiple-Input Multiple-Output (MIMO) control systems with asynchronous, non-systematically delayed and corrupted measurements provided by a set of sensors. The delays, which make the data available Out-Of-Sequence (OOS), appear when using physically distributed sensors, communication networks and pre-processing algorithms. The potentially corrupted measurements can be generated by malfunctioning sensors or communication errors. Our algorithms, designed to work with real-time control systems, handle these problems with a streamlined memory and computational efficient reorganization of the basic operations of the Kalman and Information Filters (KF & IF). The two versions designed to deal only with valid measurements are optimal solutions of the OOS problem, while the other two remaining are suboptimal algorithms able to handle corrupted data.  相似文献   

5.
A novel feature-based tracking approach based on the Kalman filter is proposed for the detection, localization, and 3-D reconstruction of internal defects in hardwood logs from cross-sectional computer tomography (CT) images. The defects are simultaneously detected, classified, localized, and reconstructed in 3-D space, making the proposed scheme computationally much more efficient than existing methods where the defects are detected and localized independently in individual CT image slices and the 3-D reconstruction of the defects accomplished via correspondence analysis across the various CT image slices. Robust techniques for defect detection and classification are proposed. Defect class-specific tracking schemes based on the Kalman filter, B-spline contour approximation, and Snakes contour fitting are designed which use the geometric parameters of the defect contours as the tracking variables. Experimental results on cross-sectional CT images of hardwood logs from select species such as white ash, hard maple, and red oak are presented.  相似文献   

6.
The main objective of this paper is to provide a tool for performing path planning at the servo-level of a mobile robot. The ability to perform, in a provably-correct manner, such a complex task at the servo-level can lead to a large increase in the speed of operation, low energy consumption and high quality of response. Planning has been traditionally limited to the high level controller of a robot. The guidance velocity signal from this stage is usually converted to a control signal using what is known as an electronic speed controller (ESC). This paper demonstrates the ability of the harmonic potential field (HPF) approach to generate a provably-correct, constrained, well-behaved trajectory and control signal for a rigid, nonholonomic robot in a stationary, cluttered environment. It is shown that the HPF-based, servo-level planner can address a large number of challenges facing planning in a realistic situation. The suggested approach migrates the rich and provably-correct properties of the solution trajectories from an HPF planner to those of the robot. This is achieved using a synchronizing control signal whose aim is to align the velocity of the robot in its local coordinates, with that of the gradient of the HPF. The link between the two is made possible by representing the robot using what the paper terms “separable form”. The context-sensitive and goal-oriented control signal used to steer the robot is demonstrated to be well-behaved and robust in the presence of actuator noise, saturation and uncertainty in the parameters. The approach is developed, proofs of correctness are provided and the capabilities of the scheme are demonstrated using simulation results.  相似文献   

7.
This paper highlights the design, electromagnetic analysis, system modelling, set-up fabrication, and finally control of an attraction type lab developed levitation prototype. The objectives of this work are parameters' evaluation, for example, force, inductance, and current-air-gap characteristics using a novel analytical model, electromagnetic results, and practical experiments. The FE model has been built using standard packages. A novel permeance function-based approach is developed for the analytical evaluation of parameters. These are verified by actual experiments too with excellent correlation between the sets of results. Agreement between analytical and practical values also show that the modelling is perfect and reliable which further leads to accurate design, fabrication, and implementation of the controller. A simple but reliable controller has been designed, analyzed, and implemented. The performances have been significantly improved. Finally, the steel object has been successfully and steadily levitated in robust condition.  相似文献   

8.
9.
Our newly developed event-based planning and control theory is applied to robotic systems. It Introduces a suitable action or motion reference variable other than time, but directly related to the desired and measurable systems output, called event. Here the event is the length of the path tracked by a robot. It enables the construction of an integrated planning and control system where planning becomes a real-time closed-loop process. The path-based integration planning and control scheme is exemplified by a single-arm tracking problem. Time and energy optimal motion plans combined with nonlinear feedback control are derived in closed form. To the best of our knowledge, this closed-form solution was not obtained before. The equivalence of path-based and time-based representations of nonlinear feedback control is shown, and an overall system stability criterion has also been obtained. The application of event-based integrated planning and control provides the robotic systems the capability to cope with unexpected and uncertain events in real time, without the need for replanning. The theoretical results are illustrated and verified by experiments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号