首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
We demonstrate that the catalyst Perkalite F100 efficiently works as a nanocatalyst in the depolymerization of poly(ethylene terephthalate) (PET). After depolymerization of PET in the presence of ethylene glycol and the Perkalite nanocatalyst, the main product obtained was bis(2‐hydroxylethyl) terephthalate (BHET) with high purity, as confirmed by Fourier transform infrared spectroscopy and NMR. The BHET monomers could serve directly as starting materials in a further polymerization into PET with a virgin quality and contribute to a solution for the disposal of PET polymers. Compared with the direct glycolysis of PET, the addition of a predegradation step was shown to reduce the reaction time needed to reach the depolymerization equilibrium. The addition of the predegradation step also allowed lower reaction temperatures. Therefore, the strategy to include a predegradation step before depolymerization is suitable for increasing the efficiency of the glycolysis reaction of PET into BHET monomers. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46285.  相似文献   

2.
Glycolytic depolymerization of polyethylene terephthalate (PET) bottle waste was attempted using ethylene glycol (EG) in the presence of chlorides of zinc, lithium, didymium, magnesium, and iron as catalysts. Virtual monomer bis (2‐hydroxyethyl terephthalate) (BHET) was obtained in all cases with nearly 74% yield, the highest yield being achieved with zinc chloride catalyst 0.5% w/w, PET : EG ratio 1 : 14 and 8 h under reflux conditions. The results were comparable to other catalysts like common alkalis, acids, and salts of some earth metals and zeolites used earlier although parameters of glycolysis were observed to vary depending on the catalyst. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

3.
Pretreatment process of silica-coated PET fabrics, a major low-grade PET waste, was developed using the reaction with NaOH solution. By destroying the structure of silica coating layer, impurities such as silica and pigment dyes could be removed. The removal of impurity was confirmed by X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), and energy dispersive X-ray spectroscopy (EDX). The pretreated PET fabric samples were used for depolymerization into its monomer, bis(2-hydroxylethyl) terephthalate (BHET), by glycolysis with ethylene glycol (EG), and zinc acetate (ZnAc) catalyst. The quality of BHET was confirmed by DSC, TGA, HPLC and NMR analyses. The highest BHET yield of 89.23% was obtained from pretreated PET fabrics, while glycolysis with raw PET fabric yielded 85.43%. The BHET yield from untreated silica-coated PET fabrics was 60.39%. The pretreatment process enhances the monomer yield by the removal of impurity and also improves the quality of the monomer.  相似文献   

4.
To reclaim the monomers or prepare intermediates suitable for other polymers zinc acetate catalayzed glycolysis of waste poly(ethylene terephthalate) (PET) was carried out with ethylene or propylene glycol, with PET/glycol molar ratios of1 : 0.5–1 : 3, in xylene at 170–245°C. During the multiphase reaction, depolymerization products transferred to the xylene medium from the dispersed PET/glycol droplets, shifting the equilibrium to glycolysis. Best results were obtained from the ethylene glycol (EG) reaction at 220°C, which yielded 80 mol % bis-2-hydroxyethyl terephthalate monomer and 20 mol % dimer fractions in quite pure crystalline form. Other advantages of employment of xylene in glycolysis of PET were improvement of mixing at high PET/EG ratios and recycling possibility of excess glycol, which separates from the xylene phase at low temperatures. © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 69: 2311–2319, 1998  相似文献   

5.
Glycolysis of polyethylene terephthalate waste fibers was carried out using excess ethylene glycol in the presence of different simple chemicals, namely, glacial acetic acid, lithium hydroxide, sodium sulfate, and potassium sulfate. Good yields (> 60%) of the monomer bis(2‐hydroxyethylene terephthalate) were obtained using these chemicals as depolymerization catalysts. The purified monomer was characterized by elemental analysis, melting point, IR spectroscopy, and nuclear magnetic resonance. The qualitative and quantitative yields of the monomer obtained using these catalysts are most comparable with the conventionally used heavy metal catalysts such as zinc acetate and lead acetate. The chemicals used, being cheap and comparatively less harmful to the environment, offer further advantages in chemical recycling of polyester waste fibers. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 97: 513–517, 2005  相似文献   

6.
Poly (ethylene terephthalate) (PET) is the most popular thermoplastic polymer. The ever-growing production and utilization of PET has led to postconsumer waste disposal problems because of its nonbiodegradability. The chemical depolymerization of PET waste is a possible remedy, as it results in some recyclable products. The aminolytic depolymerization of PET bottle waste with hydrazine monohydrate by conventional and nonconventional (with microwave irradiation) heating was carried out with simple chemicals as catalysts, such as sodium acetate and sodium sulfate. The yield of the product was optimized through variations in the time of aminolysis, the catalyst concentration, and the PET:hydrazine monohydrate ratio. The pure product obtained in good yield (86%) was analyzed by Fourier transform infrared spectroscopy, NMR, and differential scanning calorimetry and was identified as terephthalic dihydrazide. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

7.
The glycolysis of poly(ethylene terephthalate) (PET) was carried out using excess ethylene glycol (EG) in the presence of zinc acetate as catalysts under microwave irradiation. The effects of particle size, microwave power, the weight ratio of EG to PET, the weight ratio of catalyst to PET, reaction temperature and stirring speed on the yield of bis(hydroxyethyl terephthalate)(BHET) were investigated. The experimental results indicated that the glycolysis rate was significantly influenced by stirring speed and initial particle size. The optimal parameters of glycolysis reactions were the weight ratio of catalyst to PET of 1%, the weight ratio of EG to PET of 5, 500 W and 196°C, the yield of BHET reached to 78% at only 35 min. The glycolysis products were analyzed and identified by FTIR, differential scanning calorimetry, and elemental analysis. The kinetics of glycolysis of PET under microwave irradiation could be interpreted by the shrinking core model of the film diffusion control. The apparent activation energy was evaluated using the Arrhenius equation and it was found to be 36.5 KJ/mol, which was lower compared to the same process using conventional heating. The experimental results also showed that the reaction time was significantly decreased under microwave irradiation as compared with it by conventional heating. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

8.
Poly(ethylene terephthalate) waste was depolymerized with ethylene glycol in the presence of different catalysts, two conventional metal catalysts (zinc acetate and lead acetate) and two alkalies (sodium carbonate and sodium bicarbonate). The resulting monomer bis(2‐hydroxy ethylene terephthalate) was characterized by thin layer chromatography, melting point, IR spectroscopy, differential scanning calorimetry, and elemental analysis. The results show that the qualitative and quantitative yields of the monomer obtained with alkalies as catalysts were most comparable with the conventional heavy metal catalysts, thus providing a further advantage for the recycling of polyester waste for the cause of environmental pollution abatement. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 85: 1765–1770, 2002  相似文献   

9.
The kinetics of polyesterification of the glycolyzed PET waste with adipic acid is reported. Glycolysis of PET waste was carried out with ethylene glycol at three different ratios of PET waste to glycol. The glycolyzed products could be readily polyesterified by reacting with adipic acid, to give polyester polyols with low acid number. Kinetics of polyesterification of the glycolyzed product made from 62.5% ethylene glycol (EG) and 37.5% waste were investigated further at different hydroxyl to carboxyl ratios. Reaction conditions were nonisothermal, comparable to the industrial process scheme consisting of two isothermal regions at 170° and 200°C. The kinetic results of the polyesterification of glycolyzed PET waste are compared to the polyesterification of pure diols, namely ethylene glycol and bis(hydroxyethyl) terephthalate (BHET) with adipic acid. The reactions follow second-order kinetics at 170°C and the rate of polyesterification of the mixed diol system from PET waste lies intermediate between those of the pure diols, namely, EG and BHET. Ethylene glycol exhibited the highest reactivity. At 200°C the kinetic plots of the mixed diols from PET waste were nonlinear, and thus the reaction may not follow second-order kinetics. The nonlinearity is explained in terms of the different reactivities of the different diol species in the reaction mixture. The polyester polyols, when cured with polymeric 4,4′ diphenyl methane diisocyanates, gave polyurethane rigid foams and elastomers.  相似文献   

10.
Waste poly(ethylene terephthalate) (PET) textiles were effectively chemical recycling into flame‐retardant rigid polyurethane foams (PUFs). The PET textile wastes were glycolytically depolymerized to bis(2‐hydroxyethyl) terephthalate (BHET) by excess ethylene glycol as depolymerizing agent and zinc acetate dihydrate as catalyst. The PUFs were produced from BHET and polymeric methane diphenyl diisocyanate. The structures of BHET and PUFs were identified by FTIR spectra. The limiting oxygen index (LOI) of the PUFs (≥23.27%) was higher than that of common PUFs (16–18%), because the aromatic substituent in the depolymerized products improved the flame retardance. To improve the LOI of the PUFs, dimethyl methylphosphonate doped PUFs (DMMP‐PUFs) were produced. The LOI of DMMP‐PUFs was approached to 27.69% with the increasing of the doped DMMP. The influences of the flame retardant on the foams density, porosity, and compression properties were studied. Furthermore, the influences of foaming agent, catalyst, and flame retardant on the flame retardation were also investigated. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40857.  相似文献   

11.
The effect of zinc catalysts on the hydrolytic depolymerization of polyethylene terephthalate (PET) melts in excess water was studied using a 2-L stirred pressure reactor at temperatures of 250, 265, and 280°C. The main products of the reaction were found to be terephthalic acid, ethylene glycol, and diethylene glycol. Rate constants were calculated from initial rate data at each temperature and found to be about 20% greater than the corresponding rate constants for uncatalyzed hydrolysis. The catalytic effect of zinc, as well as sodium, salts is attributed to the electrolytic destabilization of the polymer-water interface during hydrolysis. The depolymerization rate data at 265°C were found to fit a kinetic model proposed earlier for the uncatalysed hydrolysis of PET. The effect of zinc and sodium salts on the activation energy of hydrolysis, or on the formation of ethylene glycol monomer is unclear. © 1994 John Wiley & Sons, Inc.  相似文献   

12.
Hot melt adhesives were prepared from polyester waste in three steps: Step I: Polyester waste was degraded to a monomer stage, i.e. bis-(2-hydroxyethyl)terephthalate (BHET) (1) by means of different metal acetates in the presence of ethylene glycol. The reaction in the presence of zinc acetate gave the highest yield of BHET (95%). Step II: Esterification of (I) with isophthalic acid in situ led to the formation of an esterified product (II). Step III: Further esterification of (II) with sebacic acid in situ, followed by polycondensation in the presence of antimony oxide and triphenylphosphate, led to the formation of the hot melt adhesive (III) based on BHET via the intermediate esterified product (IV). The hot melt adhesive, possessing a highest adhesive strength of 620 (psi) was obtained in a total reaction period of five hours. The present paper also details the effect of isophthalic acid and sebacic acid on the adhesive strength of (III).  相似文献   

13.
Using ethylene glycol (EG) and post‐consumer poly(ethylene terephthalate) (PET) bottles, monomers and oligomers were obtained through glycolysis catalyzed by zinc acetate. Three reaction temperatures (150, 160 and 170 °C) and water contents (0, 1.0 and 2.0% with respect to the volume of EG) were used as inputs; the extent of depolymerization as the analyzed response formed the basis for a factorial design experiment. The products obtained from PET glycolysis were analyzed using high‐performance liquid chromatography and Fourier transform infrared spectroscopy, and their morphology was evaluated using scanning electron microscopy. The results showed the presence of terephthalic acid, hydroxylated tetramers, bis(hydroxyethyl) terephthalate monomer and dimer, and also oligomers with various molecular weights, water being present in the reaction medium. Statistical analysis (95% confidence) indicated that temperature and water content were significant inputs for glycolysis of PET, with the temperature being much the more important factor. © 2016 Society of Chemical Industry  相似文献   

14.
Aminolytic depolymerization of postconsumer poly(ethylene terephthalate) (PET) bottle waste with 2-amino-2-methyl-1-propanol and 1-amino-2-propanol under atmospheric condition was investigated in the presence of catalysts zinc acetate or sodium acetate. The virtual products obtained in pure form were, respectively, bis(1-hydroxy-2-methylpropan-2-yl)terephthalamide and bis(2-hydroxypropyl)terephthalamide. The latter was taken for further studies because of its higher yield and subjected to cyclization using thionyl chloride under low-temperature conditions to get 1,4-bis(5-methyl-4,5-dihydrooxazol-2-yl)benzene, which is used as chain extender in polyester and nylon compositions and as a crosslinking agent in powder paint compositions. The products obtained from depolymerization were characterized by TLC, melting point, IR spectroscopy, 1H-NMR, 13C-NMR, and DSC. We have shown that it is possible to synthesize new utility products by recycling of PET waste. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

15.
使用乙二醇(EG)对有色聚酯(PET)废料解聚,经分离提纯,得到对苯二甲酸二乙二醇酯(BHET)。研究了物料比、反应温度、反应时间、催化剂对醇解率的影响。结果表明,在m(乙二醇)∶m(PET)=2∶1,反应温度196℃,反应时间3 h,催化剂用量为PET质量的0.5%条件下,聚酯解聚很彻底,产物羟值可达434 mg/g以上,主要成分是BHET单体及其低聚物。并通过IR,DSC,HPLC验证了产物的组成,BHET单体纯度可达96.457%。  相似文献   

16.
Series of 1‐allyl‐3‐methylimidazolium halometallate ionic liquids (ILs) were synthesized and used to degrade poly(ethylene terephthalate) (PET) as catalysts in the solvent of ethylene glycol. One important feature of these new IL catalysts is that most of them, especially [amim][CoCl3] and [amim][ZnCl3], exhibit higher catalytic activity under mild reaction condition, compared to the traditional catalysts [e.g., Zn(Ac)2], the conventional IL catalysts (e.g., [bmim]Cl), Fe‐containing magnetic IL catalysts (e.g., [bmim][FeCl4]), and metallic acetate IL catalysts (e.g., [Deim][Zn(OAc)3]). For example, using [amim][ZnCl3] as catalyst, the conversion of PET and the selectivity of bis(hydroxyethyl) terephthalate (BHET) reach up to 100% and 80.1%, respectively, under atmospheric pressure at 175°C for only 1.25 h. Another important feature is that BHET can be easily separated from the catalyst and has a high purity. Finally, based on the experimental phenomena, in ‐situ infrared spectra, and experimental results, the possible mechanism of degradation with synthesized IL is proposed. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

17.
The recycling process of Poly(ethylene terephthalate) (PET) wastes is commercially important since it converts a waste material into a value‐added product and also helps to alleviate environmental pollution. PET waste was depolymerized in the presence of ethylene glycol and manganese acetate as a catalyst. Bis(hydroxyethyl terephthalate), (BHET) and other oligomers are predominately the glycolyzed products (GP). These GP products were reacted with a prepared dichlorodiphenylsulfone (DCDPS) in presence of dried potassium carbonate. Two polysulfones (A &B) with different number average molecular weights, 1787 and 3162 g/mol. were obtained, respectively. The chemical structures of the resulting two polysulfones were elucidated using 1HNMR and characterized by the known conventional analysis techniques (e.g. FTIR, GPC, DSC, TGA…). The prepared polysulfone (B) disclosed higher thermal stability with respect to the initial reactants. The originality of this study was derived from the use of waste materials to yield a product that has acceptable high thermal stability which provide many beneficial applications in various industrial fields. POLYM. ENG. SCI., 55:1671–1678, 2015. © 2014 Society of Plastics Engineers  相似文献   

18.
在水热条件下制备出α型二氧化锰(α-MnO2)纳米管,所得产物经X射线衍射(XRD)和场发射扫描电子显微镜(FE-SEM)表征,并考察了所制备的二氧化锰纳米管在微波加热条件下催化降解塑料PET(聚对苯二甲酸乙二醇酯)的性能,当MnO2的用量是PET用量的2%时其降解率达到100%1,H NMR和FT-IR分析证明降解产物为纯BHET(对苯二甲酸乙二醇酯)单体。  相似文献   

19.
王孝龙  纪全  孔庆山  夏延致 《化工学报》2007,58(11):2926-2931
采用溶胶-凝胶(sol-gel)法,将正硅酸乙酯和水加入到制备聚对苯二甲酸乙二酯(PET)的中间产物对苯二甲酸双羟乙酯(BHET)中,在液态下均匀混合,高温下快速发生溶胶-凝胶反应,再按PET缩聚反应制得PET/SiO2纳米复合材料。通过TEM、TG、DSC对材料进行了表征和研究。结果表明,SiO2在PET中均匀分散,其尺寸在10~100 nm之间,PET/SiO2纳米复合材料的热降解活化能较普通PET有明显提高,但初始降解温度和结晶性能均有所降低。  相似文献   

20.
以乙二醇(EG)为降解剂,以醋酸锌为催化剂对聚对苯二甲酸乙二醇酯(PET)废丝进行醇解,研究了在常压下醇解反应条件对醇解率、醇解产物回收率的影响,对醇解产物进行了红外(IR)、热重-差示扫描量热(TG-DSC)以及扫描电子显微镜(SEM)分析.结果表明:PET废丝在常压下进行醇解反应,当EG:PET废丝:醋酸锌质疑比为...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号