首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Microporous chlorinated polyvinyl chloride (CPVC) membranes were prepared via thermally induced phase separation process for the first time using diphenyl ether (DPE) as diluent. The CPVC/DPE blends exhibit upper critical solution temperature (UCST)‐type phase behavior, which undergoes liquid‐liquid phase separation followed by sol‐gel transition during cooling process. Therefore, the resulting CPVC membranes presented symmetric morphology with uniformly distributed cellular pores. The cloud point (liquid‐liquid phase separation temperature) decreased with increasing CPVC content, while the sol‐gel transition temperature showed an opposite trend. Both the growth rate of diluent‐rich phase droplets and the gelation rate of the CPVC/DPE blends increased by decreasing CPVC concentration or cooling rate, leading to an increase of the pore size in the final membranes. Results of water permeation tests confirmed that the water flux of the membranes have a significant dependence on their porosity and pore size, that is the water flux increased with the increase of porosity and pore size. Moreover, the CPVC microporous membranes prepared by the TIPS process showed a high mechanical strength and excellent acid/alkali resistance, which has presented a great potential for application in the fields of water and wastewater treatment. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44346.  相似文献   

2.
The phase‐separation behavior of high‐density polyethylene (HDPE)/diluent blends was monitored with a torque variation method (TVM). The torque variation of the molten blends was recorded with a rheometer. It was verified that TVM is an efficient way to detect the thermal phase behavior of a polymer–diluent system. Subsequently, polyethylene hollow‐fiber membranes were fabricated from HDPE/dodecanol/soybean oil blends via thermally induced phase separation. Hollow‐fiber membranes with a dense outer surface of spherulites were observed. Furthermore, the effects of the spinning temperature, air‐gap distance, cold drawing, and HDPE content on the morphology and gas permeability of the resultant membranes were examined. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

3.
J.E. Yoo 《Polymer》2004,45(1):287-293
The phase behavior of ternary blends of dimethylpolycarbonate (DMPC), tetramethyl polycarbonate (TMPC), styrene-acrylonitrile (SAN) copolymer has been explored. The experimental phase behavior of ternary blends was compared with that of binary blends having the same chemical components and compositions except that the DMPC and TMPC were present in the form of copolycarbonates (DMPC-TMPC). Miscible region of DMPC/TMPC/SAN ternary blends is narrower than that of DMPC-TMPC/SAN binary blends. In addition, phase separation temperature of binary blend was higher than that of corresponding ternary blend. However, the entropic and energetic terms of ternary blends were more favorable for miscibility than those of binary blends. To understand the phase behavior of blends, phase stability conditions of binary and ternary blends were analyzed. Some ternary blends that have negative interaction energy were not miscible because these blends do not satisfy stability conditions. It was revealed that the addition of component, accompanied by the asymmetry in the binary interactions, results in destabilization of blend.  相似文献   

4.
The morphology and thermal properties of isothermal crystallized binary blends of poly(propylene-co-ethylene) copolymer (PP-co-PE) and isotactic polypropylene (iPP) with low molecular weight polyethylene (PE) were studied with differential scanning calorimeter (DSC), dynamic mechanical analysis (DMA), polarized optical microscopy (POM) and wide-angle X-ray diffraction (WAXD). In PP-co-PE/PE binary blends, however, the connected PE acted as a phase separating agent to promote phase separation for PP-co-PE/PE binary blends during crystallization. Therefore, the thermal properties of PP-co-PE/PE presented double melting peaks of PE and a single melting temperature of PP during melting trace; on the other hand, at cooling trace, the connected PE promoted crystallization rate because of enhanced segmental mobility of PP-co-PE during crystallization. At isothermal crystallization temperature between the melting points of iPP and PE, the binary blend was a crystalline/amorphous system resulting in persistent remarkable molten PE separated domains in the broken iPP spherulite. And then, when temperature was quenched to room temperature, the melted PE separated domains were crystallized that presented a crystalline/crystalline system and formed the intra-spherulite segregation morphology: these PE separated domains/droplet crystals contained mixed diluent PE with connected PE components. On the other hand, in the iPP/PE binary blends, the thermal properties showed only single melting peaks for both PE and iPP. Moreover, the glass transition temperature of iPP shifted to lower temperature with increasing PE content, implying that the diluent PE molecules were miscible with iPP to form two interfibrillar segregation morphologies: iPP-rich and PE-rich spherulites. In this work, therefore, we considered that the connected PE in PP-co-PE functioned as an effective phase separating agent for PP and diluent PE may be due to the miscibility between connected PE and diluent PE larger than that between PP and dispersed PE.  相似文献   

5.
Two novel phase-separation morphology are reported in the ternary polymer blends of poly(propylene)/nylon-12/poly(lactic acid) by utilizing a high-contrast X-ray computerized tomography. One is a “mosaic-tiling” structure, where each of three components forms equally-sized droplets in a three-dimensional tessellation manner. The other morphology is a “worm-like” structure. Two components of the three form successive droplets like stripe socks. These results strongly suggest the wide variety of the phase-separation morphologies in ternary polymer blends.  相似文献   

6.
Microporous cellulose acetate membranes were prepared by a thermally induced phase separation (TIPS) process. Two kinds of cellulose acetate with acetyl content of 51 and 55 mol % and two kinds of diluents, such as 2‐methyl‐2,4‐pentandiol and 2‐ethyl‐1,3‐hexanediol, were used. In all polymer‐diluent systems, cloud points were observed, which indicated that liquid–liquid phase separation occurred during the TIPS process. The growth of droplets formed after the phase separation was followed using three cooling conditions. The obtained pore structure was isotropic, that is, the pore size did not vary across the membrane. In addition, no macrovoids were formed. These pore structures were in contrast with those usually obtained by the immersion precipitation method. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 3951–3955, 2003  相似文献   

7.
This work aims at studying the mechanism involved in the phase coarsening of ternary tri-continuous polymer blends. To this aim, the phase coarsening behaviors of a co-continuous polyethylene (PE)/polyethylene oxide (PEO) blend, and a tri-continuous PE/polycaprolactone (PCL)/PEO blend during the quiescent annealing process are studied. Rheological characterization showed that the zero-shear viscosities of PE and PCL phases were similar but much less than the zero-shear viscosity of the PEO phase. The evolution of the microstructure of the blends during annealing was characterized using a characteristic length scale (λ). It was found that λ in both co- and tri-continuous blends increased linearly in the early stages of annealing but the phase coarsening rate decreased in both systems at longer annealing times. In general, the tri-continuous blend showed much faster phase coarsening rate. The effects of kinetic and thermodynamic parameters on the observed phase coarsening behaviors are discussed in detail. A new lubricating mechanism is proposed in which the deformation of the PCL layer between PE and PEO phases reduces the effect of high viscosity of the PEO phase and increases the phase coarsening rate in ternary blends. The obtained results provide a new insight into the role of the middle layer in tri-continuous polymer blends on controlling the phase morphology of these systems.  相似文献   

8.
The dependences of phase structure and notch impact strength on conditions of mixing have been compared for the binary blend PP/EPDM and for two ternary blends PP/EPDM/PE possessing different viscosities of polyethylene. At low rates and short times of mixing a phase structure with pronounced inhomogeneities (particles of the dispersed phase having diameters of tens μm) is formed in all blends. Conditions of mixing needed for the formation of a homogeneous phase structure (with particles having diameters of several μm) depend on the average viscosity of the components forming the inclusions (EPDM elastomer or EPDM elastomer/polyethylene). Depending on the conditions of mixing and on the rheological properties of components, substitution of one part of the EPDM elastomer with PE may lead to an increase or decrease in the impact strength of the final blend.  相似文献   

9.
The morphology and bulk properties of microporous membranes based on poly (ether ether ketone) (PEEK) have been investigated as a function of initial casting composition and thermal and mechanical processing history. Membranes were prepared via solid—liquid phase separation of miscible blends of PEEK and polyetherimide (PEI), with subsequent extraction of the PEI diluent. Scanning electron microscopy studies revealed a microporous morphology with two distinct pore size scales corresponding to diluent extraction from interfibrillar and interspherulitic regions, respectively. The membrane structure was sensitive to both initial blend composition and crystallization temperature, with the resulting pore size distribution reflecting the kinetics of phase separation. For membranes prepared with lower initial diluent content or at lower crystallization temperatures, mercury intrusion porosimetry indicated a relatively narrow distribution of fine interfibrillar pores, with an average pore size of approximately 0.04 microns. Membranes prepared at higher diluent content or at higher crystallization temperatures displayed a broad pore distribution, with a sizeable population of coarse, interspherulitic pores (0.1 to 1 μm in size). Uniaxial drawing led to a fibrillated network structure with markedly higher water flux characteristics compared to the as-cast membranes. © 1997 John Wiley & Sons, Inc. J Appl Polym Sci 66: 2347–2355, 1997  相似文献   

10.
Microporous flat films with potential as membranes were produced via melt processing and post‐extrusion drawing from immiscible polypropylene/polystyrene blends containing a compatibilizing copolymer. The blends were first compounded in a co‐rotating twin‐screw extruder and subsequently extruded through a sheet die to obtain the precursor films. These were uniaxially drawn (100%–500%) with respect to the original dimensions to induce porosity and then post‐treated at elevated temperatures to stabilize the resultant structure, which consisted of uniform microcracks in the order of a few nanometers in width. The effects of blend composition and extrusion process parameters on surface and cross‐sectional porosity and solvent permeability of the prepared films are presented and related to specific microstructural features of the films before and after drawing. Finite element modeling of the stretching operation in the solid state yielded a successful interpretation of the blend response to uniaxial tension that resulted in microcrack formation. Comparison of some of the novel microporous structures of this work with commercial membranes prepared by solvent‐based phase inversion processes suggests comparable pore size and porosity ranges, with narrower pore size distribution.  相似文献   

11.
Melt rheological properties of the ternary blend of isotactic polypropylene (PP), styreneethylene–butylene–styrene terpolymer (SEBS), and polycarbonate (PC), PP/SEBS/PC, are studied in a wide range of composition, such that PP is the matrix and SEBS and PC are the minor components, with the proportion of one varying from 0 to 30% at various fixed compositions of the other. The respective binary blends, PP/SEBS and PP/PC, studied as the reference systems for interpretation of results on the ternary blends yielded interesting new information about the morphology development and its correlation with melt rheological properties of these binary blends. The studies include the measurement of melt rheological properties on a capillary rheometer in the shear rate range 101–104 s?1 at a fixed temperature of 240°C. The data presented as conventional flow curves are analyzed for the effect of blend composition and shear rate on pseudoplasticity, melt viscosity, and melt elasticity, and role of each individual component is identified. Morphology of dispersed phases of these blends is studied through scanning electron microscopy of the cryogenically fractured and suitably etched surfaces. Variations of morphology with blend composition and shear rate showed interesting correlation with melt rheological properties, which are discussed in detail. An important finding of the morphological studies is that in the PP/SEBS/PC ternary blend the SEBS phase forms two types of morphologies depending on the blend composition and shear rate: (i) simple droplets and (ii) boundary layer at the surface of the PC droplets. © 1993 John Wiley & Sons, Inc.  相似文献   

12.
In this article, a series of diblock copolymer polyethylene‐b‐ poly(ethylene glycol)s (PE‐b‐PEGs) with various molecular weight of polyethylene segment was blended with linear low‐density PE. The PE/PE‐b‐PEG blend porous membranes with high porosity were obtained by thermally induced phase separation (TIPS) process. The isothermal crystallization kinetics of PE/LP/PE‐b‐PEG blends indicated that the introduction of PE‐b‐PEG could inhibit the growth rate of polyethylene crystals which could increase the pore size and porosity of the membranes. The PE/PE‐b‐PEG blend membranes with PE1300‐b‐PEG2200 showed the largest pore size and porosity due to its crystallization behavior during TIPS. The surface of the membranes became smoother and the morphology of the membranes could be effectively tuned by introducing PE‐b‐PEG. Compared with the PE membrane, the PE/PE‐b‐PEG blend membranes exhibited higher hydrophilicity (the water contact angle decreased from 112° to 84°), water permeability (the permeation flux increased from 80 to 440 L/m2 h under 0.1 MPa), rejection performance (completely reject carbon particles in the filtration of carbon ink solution), and fouling resistance (the value of protein adsorption dropped from 0.25 to 0.05 mg/cm2). The hydrophilicity and fouling resistance of PE/PE‐b‐PEG blend membranes increased as the length of PE segment in PE‐b‐PEGs decreased. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46499.  相似文献   

13.
Blends of ethylene–octene based olefinic block copolymer (OBC) with two amorphous polyolefin (APO) polymers [atactic propylene homopolymer (PP) and ethylene–propylene copolymer (PE–PP)] were evaluated at three different ratios. Dynamic mechanical analysis (DMA) and transmission electron microscopy (TEM) evaluations were performed to determine the blend miscibility characteristics. Viscoelastic properties of both OBC blends with PP polymer, and OBC blends with PE–PP copolymer showed incompatibility. Analysis revealed that both blends formed two phase morphologies. The effect of three unsaturated aliphatic hydrocarbon resins with varying aromatic content and two saturated hydrocarbon resins with different chemistries were evaluated as compatibilizing agent for OBC/PP and OBC/PE–PP blends. A 1 : 1 polymer blend ratio of OBC/PP and OBC/PE–PP was selected to better understand the influence of resin addition at three different levels 20, 30, and 40 wt %. The fully aliphatic unsaturated resin seems to improve the miscibility of the OBC/PP blends at higher resin addition levels, but reduced the miscibility as the aromatic content of the resin increases. However, OBC/PE–PP blends showed improved miscibility with increasing aromatic content. A ternary phase morphology was particularly observed for both OBC/PP and OBC/PE–PP blends with highly aromatic (14%) unsaturated hydrocarbon resin, in which OBC formed the continuous phase, and PP, PE–PP, and unsaturated hydrocarbon resins formed the dispersed phase. Interestingly, we did not observe much difference in miscibility characteristics between the two saturated resin chemistries in both blend systems (OBC/PP and OBC/PE–PP). The Harkins spreading coefficient concept was used to better understand the ternary blend dispersed phase morphology. Spreading coefficients indicate that the free hydrocarbon resins (both unsaturated and saturated) were encapsulated by the amorphous PP or amorphous PE–PP polymer in the dispersed phase for the respective blend compositions. Overall OBC–PP and OBC/PE–PP blends showed better miscibility characteristics with both saturated aliphatic hydrocarbon resins, irrespective of the difference in resin chemistries. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 2624–2644, 2013  相似文献   

14.
The role of the single diluents and mixed diluents on the poly (vinylidene fluoride) (PVDF)/poly(methyl methacrylate) (PMMA) blend membranes via thermally induced phase separation (TIPS) process was investigated. The crystallization behaviors of PVDF in the diluted samples were examined by differential scanning calorimetry. The melting and crystallization temperatures of those diluted PVDF blend were decreased with the enhanced interactions between polymer chains and diluent molecules. The crystallinity of PVDF in the diluent was always higher than that obtained in PVDF blend sample. This can be explained by the dilution effects, which increased the average spatial separation distances between crystallizable chains. Thus, the PVDF crystallization was favored. Additionally, solid‐liquid (S‐L) phase separation occurred in the quenched samples. Illustrated by scanning electron microscopy, inter‐ and intraspherulitic voids were formed in the ultimate membranes, which related to the polymer/diluent interactions, the kinetics of crystallization and diluent rejection from the growing crystal. The porosity of the PVDF blend membranes obtained from the mixed diluents was higher than those obtained from the single diluent samples. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

15.
We quantified interfacial adhesion in ternary blends with matrix/shell/core microstructure based on mechanical properties assessments. Various HDPE-based ternary blends containing PA-6/EVOH core/shell droplets were prepared by changing composition and processing temperature. The theoretical predictions of tensile properties were compared with experimental data; thereby considerable shift in experimental modulus from lower to upper limit observed over a 10°C increase in melting temperature. This confirmed the impact of blending temperature on matching the predicted values with experimental data. The meaningful trend observed in tensile characteristics of ternary blends simply gives an understanding of interfacial adhesion degree in ternary blend showing matrix/shell/core microstructure.  相似文献   

16.
The effect of added block copolymer on the phase separation and morphology evolution in a partially miscible blend of polystyrene and polybutadiene near the critical composition is studied by temperature jump light scattering (TJLS) and transmission electron microscopy (TEM). As block copolymer is added, the phase boundary is shifted to lower temperatures and the phase separation process is slowed dramatically. Since the quench depth greatly affects the rate of phase separation in any blend system, we have used equivalent quench depths by adjusting for the shift in the phase boundary as block copolymer is added. The morphology evolution of these ternary blends was studied by preparing TEM specimens at equivalent shallow quench depths (ΔT = 1.6°C) and allowing each blend mixture to coarsen for the time required to reach a specific constant size, or q-value, using the TJLS data on the kinetics of phase separation. The q-range selected was q ~ 0.003–0.005 nm?1, which corresponds to a spacing of 1–2 μm in real space. The combination of light scattering and microscopy techniques more rigorously describes the compatibilization process in these complex ternary systems.  相似文献   

17.
The morphology of binary and ternary polyolefin blends of polypropylene (PP), ethylene-propylene-diene terpolymer (EPDM) and polyethylene (PE) following processing by injection and compression molding has been examined by optical and scanning electron microscopy. Internal surfaces were generated by low temperature fracture and etching with cyclohexane. In binary blends, droplets of EPDM are elongated in the flow direction within 400μm of the mold surface in injection molding, yielding a skin region which is distinct from an isotropic core containing spherical EPDM inclusions. Spherical droplets of EPDM or PE in binary blends with PP increase in size with increasing compression molding time. In ternary blends, spherical inclusions containing both EPDM and PE are dispersed in PP. With increasing compression molding time, EPDM separates from PE and concentrates at the outer edges of the PE inclusion, effectively isolating PE from the PP matrix.  相似文献   

18.
采用相对分子质量为130 000的聚乙烯(PE)为膜材、DIDP为稀释剂、平均直径为180 nm的TiO2粉末作添加剂,用热致相分离(TIPS)法制备了PE膜和PE/TiO2共混膜。研究了共混组成和冷却速率对膜结构的影响。所有制备的膜均是海绵状孔,冷却速率越大,膜孔越小。对PE质量分数为15%,当PE与TiO2的质量比大于1时,TiO2在膜内的分布不均匀,当PE与TiO2的质量比为0.5时,TiO2能比较均匀的分布于膜内。共混膜浸于水中经过紫外照射后,其亲水性显著增加。  相似文献   

19.
The polyvinylidene fluoride (PVDF)‐diphenyl ketone (DPK) mixture was studied as a new system to prepare PVDF membranes via thermally induced phase separation (TIPS). The phenomena of liquid–liquid phase separation was found in this mixture when the temperature of mixture was decreasing and the PVDF concentration was less than 30 wt %. Using DPK as diluent, PVDF membrane with bicontinuous structure was obtained without necessity to add a nonsolvent or a stretching process further. The phase diagram of PVDF‐DPK system was also constructed to help investigate the effect of PVDF concentration and coarsening temperature on morphology of resulting membrane. The experiments showed that high coarsening temperatures and low PVDF concentrations resulted in the formation of the large pore size membrane. The strength of the wet membrane was decreasing with decreasing PVDF concentration. On condition that the PVDF concentration was larger than 30 wt %, thermally induced solid–liquid separation occurred and bicontinuous structure disappeared. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

20.
This study examined the effect of three compatibilizers, namely, a hybrid compatibilizer composed of polypropylene‐maleic anhydride (PP‐g‐MAH) and polyethylene‐glycidyl methacrylate (PE‐g‐GMA), a single compatibilizer composed of PP‐g‐MAH, and a single compatibilizer composed of PE‐g‐GMA, on the mechanical, morphological, and rheological properties of a ternary blend of polypropylene (PP), poly(lactic acid; PLA), and a toughening modifier. The results of tensile strength, flexural strength, and impact strength tests for the ternary blends before and after hydrolysis, revealed that the ternary blend with a hybrid compatibilizer content of 3 phr exhibited better material properties than the blend containing a single compatibilizer. In the weighted relaxation spectra of the ternary blend using the Palierne emulsion model, the ternary blend containing the hybrid compatibilizer, exhibited only one relaxation spectrum peak at ∼ 0.16 s. This result suggests that the ternary blend with the hybrid compatibilizer exhibits uncharacteristic morphological properties, that is, a single‐phase microstructure. The above results suggest that the hybrid mixture is an effective compatibilizer for the ternary blend of PP, PLA, and a toughening modifier. POLYM. COMPOS., 2012. © 2012 Society of Plastics Engineers  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号