首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Composite films composed of poly(methyl methacrylate) (PMMA) and the nematic-type liquid crystal (LC) E8 were prepared by solution casting in chloroform. The electro-optical performance characteristics were studied for a wide range of PMMA/E8 compositions (10–80 wt % E8). At two specific levels of LC (70 and 80 wt %), the effects of temperature, voltage, and frequency of the applied electric field on the optical transmittance of films were extensively measured with a He–Ne laser (λ = 632.8 nm) as a light source. Scanning electron microscopy observations showed the formation of large E8 droplets in PMMA due to phase separation, and the homogeneous distribution increased with increasing E8 content. The results were interpreted in terms of aggregation structure, interfacial interaction, LC loading, and the solubility of LC in the polymer matrix. The results obtained indicate that under the experimental conditions imposed, the output could be continuously controlled to the desired level by the selection of a suitable loading of LC to prepare polymer-dispersed LC electro-optical active composite films with response times on the order of only a few milliseconds. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

2.
Composite films composed of poly(methyl methacrylate‐co‐butyl acrylate) (PMMABA) and nematic‐type liquid crystals E7 and E8 (commercial products from E. Merck, Darmstadt, Germany) were prepared through solvent casting in chloroform. The morphology and electrooptic responses were studied. Scanning electron microscopy observations showed that the liquid‐crystal phase (E7 or E8), as larger, elongated, interconnected cavities, was continuously embedded in a spongelike PMMABA matrix. At a specific level of the liquid‐crystal (E7 or E8) loading (30/70 wt %), the effects of the voltage, temperature, and frequency of an applied alternating‐current electric field on the transmittance of the composite films were measured with a He–Ne laser (wavelength = 632.8 nm). The results were interpreted in terms of the aggregation structure, interfacial interaction, and solubility of the liquid crystal in the matrix polymer. The results indicated that, under these experimental conditions, the output could be controlled to a desired level by the selection of suitable liquid crystals to prepare polymer‐dispersed liquid‐crystal, electrooptic, active composite films with a response time of the order of only milliseconds or less. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2008  相似文献   

3.
Poly(lactide)/poly(methyl methacrylate)/silica (PLA/PMMA/SiO2) composites were fabricated using a twin‐screw extruder. Nanosilica particles were incorporated to improve the toughness of the brittle PLA, and a chain extender reagent (Joncryl ADR 4368S) was used to reduce the hydrolysis of the PLA during fabrication. Highly transparent PLA and PMMA were designated to blend to obtain the miscible and transparent blends. To estimate the performance of the PLA/PMMA/SiO2 composites, a series of measurements was conducted, including tensile and Izod impact tests, light transmission and haze measurements, thermomechanical analysis, and isothermal crystallization behavior determination. A chain extender increases the ultimate tensile strength of the PLA/PMMA/SiO2 composites by ~43%, and both a chain extender and nanosilica particles increase Young's modulus and Izod impact strength of the composites. Including 0.5 wt % nanosilica particles increase the elongation at break and Izod impact strength by ~287 and 163%, respectively, compared with those of the neat PLA. On account of the mechanical performances, the optimal blending ratio may be between PLA/PMMA/SiO2 (90/10) and PLA/PMMA/SiO2 (80/20). The total light transmittance of the PLA/PMMA/SiO2 composites reaches as high as 91%, indicating a high miscible PLA/PMMA blend. The haze value of the PLA/PMMA/SiO2 composites is less than 35%. Incorporating nanosilica particles can increase the crystallization sites and crystallinities of the PLA/PMMA/SiO2 composites with a simultaneous decrease of the spherulite dimension. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42378.  相似文献   

4.
A series of poly(methyl methacrylate) (PMMA)/polysiloxane composites and their coatings were prepared as designed. A copolymer (PMMAVTEOS) containing methyl methacrylate (MMA) and vinyltriethoxysilane (VTEOS) was prepared by free radical polymerization and then condensed with methyl triethoxysilane (MTES) to fabricate PMMA/polysiloxane composites; their corresponding coatings were obtained via a curing process in an oven (at 75 °C). The polymers were characterized by gel permeation chromatography and Fourier transform infrared spectroscopy. The surface property, hardness, water contact angle, thermal stability, and optical property of the coatings were investigated by scanning electron microscopy, pencil hardness testing, water contact angle testing, thermogravimetric analysis, and ultraviolet–visible spectroscopy, respectively. The results showed that, after addition of MMA, the pencil hardness of the coatings was reduced from 6H to 2H and the thermal stability decreased from 365 to 314 °C. However, it increased the flexibility and adhesion properties (the water contact angle increased from 94.7° to 102.1°). The transparent PMMA/polysiloxane coatings showed excellent scratch resistance, a smooth surface, high thermal stability, and a strong adhesion property. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46358.  相似文献   

5.
To improve the crystallization and mechanical properties of poly(ethylene terephthalate) (PET), in this work, PET/SiO2‐MgO‐CaO whiskers composites were prepared via in situ polymerization. The morphology, crystallization, and mechanical properties of the prepared composites were investigated. It was found that inorganic whiskers could be easily dispersed in PET matrix, as demonstrated by SEM and PLM. DSC and PLM observation indicated a strong nucleation capability of inorganic whiskers for PET. Mechanical analysis results showed that the glass transition temperature, tensile strength, and modulus of the composites were greatly improved. A possible chemical bonding between PET chains and the surface of whiskers was observed by FTIR, TGA, and sedimentation experiment. It could be the main reason for the good dispersion and improved properties of the prepared composites. This work is important for the application of PET due to the low cost but high reinforcing efficiency of this inorganic whisker. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

6.
Mian Wang  Suat Hong Goh 《Carbon》2006,44(4):613-617
We have studied the dynamic mechanical behavior of poly(methyl methacrylate) (PMMA)/acidified multiwalled carbon nanotube (MWNT) composites compatibilized with amine-terminated poly(ethylene oxide) (PEO-NH2). PEO-NH2 is ionically associated with acidified MWNTs via ionic interaction as shown by XPS and FTIR. The miscibility between PEO and PMMA improves the interfacial adhesion between polymer matrix and MWNTs, leading to an increase in the storage modulus values of the composites. The effects of PEO-NH2 on storage modulus and glass transition temperature are discussed.  相似文献   

7.
Poly(methyl methacrylate)/multiwalled carbon nanotubes (PMMA/MWCNT) composites were prepared by two different methods: melt mixing and solution casting. For solution casting, two different solvents, toluene and chloroform, were used to prepare PMMA solutions with different concentrations of MWCNT. The dispersion of the CNT in the composite samples was verified by scanning electron microscopy. For the nanocomposites prepared by both methods, the electrical conductivity increased with increasing filler content, showing typical percolation behavior. In addition, an increase of 11 orders of magnitude in the electrical conductivity relative to the matrix conductivity was determined by broadband dielectric spectroscopy and four probe conductivity measurements. A maximum value of σDC ~ 1.6 S/cm was found for the highest filler loaded sample (3.67 vol %), which was prepared by solution casting from toluene. Nanoindentation analysis was used to characterize the surface mechanical properties of the composite samples prepared by the different methods. Indentation tests were performed at various penetration depths, and it was revealed that the melt mixing process resulted in stiffer neat PMMA samples compared to the solution casted PMMA samples. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41721.  相似文献   

8.
On the basis of sol–gel methodology, a novel degradable hybrid electrolyte, poly(lactic acid) (PLA)/poly(methyl methacrylate) (PMMA)/silicon dioxide (SiO2) hybrid electrolyte, was prepared from PLA, methyl methacrylate, and tetraethoxylsilicon with 3‐methacryloxypropyl trimethoxysilane as a coupling agent. As observed from Fourier transform infrared spectroscopy and X‐ray photoelectron spectroscopy spectra, the PLA, PMMA, and silica units were linked by covalent bonds through the coupling agent in a hybrid network. Differential scanning calorimetry results show that the heat‐resistance properties of the hybrid electrolyte improved with increasing SiO2 content. The hybrid electrolyte was shown to be amorphous by the X‐ray diffraction results. From study of ionic conductivity by alternating‐current impedance, the ionic conductivity of the PLA/PMMA/SiO2 hybrid electrolyte increased with increasing silica content, reached a maximum value of 2.42 × 10?4 S/cm at 2 wt % SiO2, and then decreased. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

9.
In this study, poly(methyl methacrylate) (PMMA)/starch composites were prepared by a simple solvent casting method. The morphologies of the PMMA/starch composites were studied by scanning electron microscopy. The intermolecular interaction between PMMA and starch was investigated with Fourier transform infrared spectroscopy. The thermal properties of the PMMA/starch composites were compared with those of the pure PMMA sample. Thermogravimetric analysis showed that the thermal stability increased as the starch content increased in the composites. The biodegradability of the PMMA/starch composites was studied with a soil burial test. The degradability was measured in terms of mechanical strength, which increased as the starch content increased. The essential work of fracture (EWF) of the PMMA/starch composite films was investigated by the application of EWF theory under in‐plane (mode I) conditions, and we found that the toughness, in terms of the EWF of composites, increased compared to that of pure PMMA. The fracture of the composites was also evaluated by ANSYS software, and the results were compared to the experimental output. The increased toughness of these PMMA/starch composites may enable their application in the automobile and packaging industries. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

10.
To reveal the role of crystalline polymers in carbon black (CB) filled amorphous polymer composites and improve the mechanical properties of composite films, CB/poly(ethylene glycol) (PEG)/poly(methyl methacrylate) (PMMA) composites were synthesized by polymerization filling in this work. The electrical conductive property and response to organic solvent vapors of the composites were investigated. The composites, characterized by a relatively low percolation threshold (~ 2.1 wt %), had lower resistivity than CB/PMMA composites prepared with the same method because of the different dispersion status of CB particles in the matrix polymer. The concentration and molecular weight of PEG notably influenced the electrical response of the composites against organic vapors. The drastic increase in the electrical resistance of the composites in various organic vapors could be attributed mainly to the swelling of the amorphous polymer matrix in the solvent but not to that of the crystalline polymer. These findings could help us to understand the conductive mechanism and electrical response mechanism of the composites as promising gas‐sensing materials. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2008  相似文献   

11.
In this study, poly(methyl methacrylate) (PMMA)/graphene nanoplatelets (GNPs) conductive composite films with different morphologies were fabricated from the same constituent materials using four fabrication techniques, solution casting (SC), SC followed by hot pressing (SCP), melt mixing followed by SC (MSC), and melt mixing followed by hot pressing (MP). Morphologies of dispersed GNPs and electrical properties in both in-plane and perpendicular direction were investigated and compared systematically. The corresponding percolation thresholds (Φc) of the composites varied from 0.42 ± 0.13 vol% to 3.26 ± 0.48 vol%. The conductivities varied up to two orders of magnitude and decreased in the sequence of SC > MSC > SCP > MP. These variations were explained in terms of GNPs size, GNPs orientation, distribution and dispersion state of fillers. The contribution of the above factors in each procedure were discerned individually, the results were discussed and compared with other experimental studies and simulations as well.  相似文献   

12.
A flame retardants containing phosphorus-silicon, DOPO-VTS, was synthesized and incorporated into polymethyl methacrylate (PMMA) matrix through sol-gel process at different loadings. The results from Fourier Transform Infrared Spectroscopy (FTIR), Scanning Electron Microscope (SEM) and Differential Scanning Calorimetry (DSC) showed that silicon particle were formed and dispersed well in the PMMA matrix. The addition of DOPO-VTS can not only enhance the flame retardancy of PMMA but also improve the thermal stability of PMMA. When compared to PMMA, the addition of only 15wt% DOPO-VTS results in 28.5% decrease in pHRR. Moreover, 15.0 wt% DOPO-VTS results in 32.0 °C increase in half degradation temperatures (T0.5). The results of Hot Stage Microscopy (HSM) and FTIR showed that phosphorus-containing compound and the silicon crystal were formed in the char layers during the pyrolysis process, and the char layers can effectively prevent the degradation of PMMA/silicon particle composites. It's believed that this research will stimulate further efforts in silicon particle as the based flame retardants in different polymers for the property reinforcements.  相似文献   

13.
Noncovalent chemical modification by initiated chemical vapor deposition technique is applied to carbon nanotubes (CNTs) to reduce average agglomerate size of the nanoparticles in the polymer matrix and to improve surface interaction between the composite constituents. CNT surfaces are coated conformally with thin poly(glycidyl methacrylate) (PGMA) polymer film and coated nanoparticles are incorporated in poly(methyl methacrylate) (PMMA) polymer matrix using solvent casting technique. Conformal PGMA coatings around individual nanotubes were identified by scanning electron microscopy analysis. Transmission electron microscopy and optical microscopy analyses show homogeneous composite morphology for composites prepared by using PGMA coated nanotubes. Fourier Transform Infrared and X‐ray photoelectron spectroscopy analyses show the successful deposition of polymer with high retention of epoxide functionality. PGMA coating of CNTs exhibits improvement in electrical conductivity and tensile properties of PGMA‐CNT/PMMA systems when compared with uncoated nanoparticles. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

14.
Poly(methyl methacrylate)/styrene/multi‐walled carbon nanotubes (PMMA/PS/MWNTs) copolymer nanocomposites with different contents have been prepared successfully by means of in situ polymerization method. The structure and the microhardness of PMMA/PS/MWNTs copolymer nanocomposites were characterized. The tribological behaviors of the copolymer nanocomposites were investigated by a friction and wear tester under dry conditions. The relative humidity of the air was about 50% ± 10%. Comparing with pure PMMA/PS copolymer, the copolymer nanocomposites showed not only better wear resistance but also smaller friction coefficient. MWNTs could help the nanocomposites dramatically improve the wear resistance property. The mechanisms of the improvements on the tribological properties of the PMMA/PS/MWNTs copolymer nanocomposites were also discussed in detail. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

15.
Long‐fiber pellets were made by an in situ pultrusion process. Fiber‐reinforced composites were prepared by an injection‐molding process and an extrusion/injection‐molding method with pellets, respectively. SEM observations showed that the strong interface was maintained during the injection process for low shearing forces, although polymer adhesion to the fiber surface was completely delaminated in the process of extrusion/injection molding for very high shearing forces. Enhanced adhesion of composites promoted substantial improvement of mechanical properties compared to those with poor adhesion. However, the enhanced adhesion between the fiber and the matrix also sacrificed the impact resistance properties. Longer fibers substantially enhanced the properties of composites. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 93: 2478–2483, 2004  相似文献   

16.
In the present work, we study the thermal behavior of Polymer (Polystyrene) dispersed (4‐cyano‐4′‐pentylbiphenyl) 5CB liquid crystal film composite. A photopyroelectric device was used to study thermal conductivity at homeotropic and planar aligned of 4‐cyano‐4′‐pentylbiphenyl (5CB) liquid crystal. Thermal conductivity of polystyrene (PS) has been determined and calculated from experimental applied data reported in the literature. Thermal conductivity characteristics of the PDLC films were investigated with three prediction models as a function of both temperature and liquid crystal concentration in the polymer matrix. We particularly show the behavior of this thermal conductivity in the ON and OFF state. It was found that the difference in the film thermal conductivity ranges between 3 and 21%, depending on the ON and OFF state and the liquid crystal volume concentration. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 481–486, 2003  相似文献   

17.
The effect of preshearing resin mixtures prior to casting on the structure and properties of in situ polymerized poly(methyl methacrylate)/clay nanocomposite panels was investigated. The preshearing was performed with a mechanical stirrer and controlled by varying mixing time. The structure, thermomechanical, and optical properties of the panels prepared with different preshearing times were analyzed by XRD, TEM, DMA, and UV/visible spectrophotometer. The properties of the panels increased with preshearing time because of improved intercalation and exfoliation of the clay. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

18.
This article deals with the study of some mechanical properties of ZnS/poly(methyl methacrylate) nanocomposites prepared by solution casting method. The obtained ZnS/PMMA nanocomposites have ZnS nanoparticles in (0, 2, 4, 6, and 8) wt % and characterized through X‐ray diffraction (XRD), transmission electron microscope (TEM), scanning electron microscope (SEM), and Fourier transform infrared (FTIR) spectroscopy measurements. Mechanical properties of ZnS/PMMA nanocomposites have been determined at different temperatures (30°C, 50°C, 70°C, and 90°C) through their stress–strain behavior using dynamic mechanical analyzer (DMA). The properties have been found to increase upto 6 wt % of ZnS nanoparticles and then decrease for 8 wt % of ZnS nanoparticles. A theoretical model has also been employed to predict the strain softening and strain hardening of the material. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

19.
We designed and prepared novel hybrid films of nanoparticles consisting of gelatin‐g‐poly(methyl methacrylate) (PMMA)/silver (Ag) polymers with ordered nanoporous, higher antibacterial activities. First, the gelatin‐grafted PMMA microspheres were fabricated with the in situ copolymerization of gelatin and alkenes under radical initiation, which acted as a stabilizer and regulator for Ag nanoparticle growth. Then, silver nitrate was entrapped in a copolymerization system at 40°C for 30 min. Finally, the gelatin‐g‐PMMA/Ag polymer hybrid films were prepared by the reduction of Ag+ with hydrazine, followed by emulsion solidification. The antibacterial activities of the gelatin‐g‐PMMA/Ag polymer hybrid films against Escherichia coli and Staphylococcus aureus were found with the disc diffusion method and colony count assays to be clear and lasting. In this study, our work not only presented a good example of a nanoporous antibacterial film material but also provided a facile method for making use of gelatin and metal/inorganic self‐assemble properties in graft copolymerization to prepare functional polymer hybrids, such as antibacterial, antithrombogenic, and dot‐quantum effect materials. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

20.
In this work, poly(methyl methacrylate)/(glass flake) (GF) composites were prepared with different compositions via melt mixing. The effect of the filler ingredient on thermal behavior, morphology, and mechanical and optical properties was investigated by using various techniques, namely differential scanning calorimetry, ultraviolet‐visible spectra, mechanical testing, and scanning electron microscopy. For evaluating the level of dispersion of particles, energy dispersive X‐ray analysis was performed. Differential scanning calorimetry analysis showed that the glass transition temperature of the samples slightly increased by increasing GF content. Scanning electron microscopy images showed that sized flakes were uniformly dispersed within poly(methyl methacrylate). Energy dispersive X‐ray analysis images of samples with different inclusions of GFs showed that the appearance of white dense spots represents the GF particles. It was found that the presence of 0.5 wt% of GF in composites gave more transparency than the other compositions. Furthermore, this composition indicated maximum tensile strength and elongation‐at‐break values in comparison with the other compositions. J. VINYL ADDIT. TECHNOL., 23:62–69, 2017. © 2015 Society of Plastics Engineers  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号