共查询到20条相似文献,搜索用时 15 毫秒
1.
选用三元材料LiNi_(0.5)Co_(0.2)Mn_(0.3)O_2为正极材料,中间相炭微球为负极材料,制备了额定容量为10 Ah的铝壳锂离子动力电池,并对电池的电性能和安全性能进行了相关测试。电性能包括充放电性能、倍率性能、循环性能和自放电,实验结果表明,电池表现出了良好的倍率性能,1 C、2 C的放电容量分别为0.5 C放电容量的97.49%、93.70%;在2.7~4.2V电压范围内,电池1 C循环400次后容量保持率为101.77%;电池满电常温搁置28天后容量保持率为97.06%。针刺、短路、过充电和自有跌落测试结果表明电池具有良好的安全性能。 相似文献
2.
采用化学共沉淀法预先合成球形前驱体Ni0.5Co0.2Mn0.3(OH)2,再与锂源共混后高温煅烧合成高容量正极材料Li Ni0.5Co0.3Mn0.2O2。探讨了不同烧结制度对材料结构性能的影响。X射线衍射(XRD)结果表明,产物结构为α-Na Fe O2型层状结构。扫描电子显微镜(SEM)显示材料具有良好的球形形貌。测试材料的电化学性能,在2.75~4.20 V和2.75~4.35 V充放电截止电压,0.5 C充放电电流下,首次放电比容量分别为162.2和172.6 m Ah/g,循环3周后容量保持率分别为96.73%和94.62%。材料还表现出良好的倍率性能。 相似文献
3.
采用溶胶凝胶法和高温煅烧的方法对LiNi_(0.5)Co_(0.2)Mn_(0.3)O)2正极材料进行C和CeO_2双包覆改性研究,X射线衍射(XRD)测试表明包覆改性的LiNi_(0.5)Co_(0.2)Mn_(0.3)O)2材料仍维持层状结构并抑制阳离子混排。扫描电子显微镜(SEM)结果显示C包覆厚度约为5 nm,CeO_2以纳米颗粒形式沉积在材料表面。循环伏安和阻抗测试表明双包覆提高了电极材料表面稳定性与电子电导性,有利于离子的嵌入与脱嵌,从而提高了LiNi_(0.5)Co_(0.2)Mn_(0.3)O)2正极材料的电化学性能。在1 C下循环50次后的容量保持率为91.3%,10 C下首次放电比容量为108 m Ah/g。 相似文献
4.
锂离子电池正极材料LiNi0.5Co0.5O2的制备及性能 总被引:3,自引:1,他引:3
LiNixCo1-xO2(0≤x≤1)系是一种很有希望的新型的锂离子电池电极材料.以Li2CO3,NiO,Co3O4为原料,经过造粒的预处理,固相反应合成了锂离子电池正极材料LiNi0.5Co0.5O2.研究了不同的合成条件对产物结构、性能的影响.结果表明,反应温度、时间、Li/(Ni+Co)摩尔比等因素对产物的结构、电性能有一定的影响.XRD分析表明合成的产物LiNi0.5Co0.5O2结晶良好,具有规整的a-NaFeO2层状结构的.充放电测试表明在优化条件下合成的LiNi0.5Co0.5O2首次充电容量为170.1mAh/g,放电容量为157.4mAh/g,20次循环后保持初始容量的92%,循环稳定性良好.以MCMB为阳极材料,合成产物为阴极材料,组装成18650型锂离子电池,性能与LiCoO2相当. 相似文献
5.
以Ni0.5Co0.2Mn0.3(OH)2和Li2CO3为原料,TiO2和ZnO为掺杂剂,制备出不同含量钛锌离子复合掺杂的锂离子电池正极材料LiNi0.5Co0.2Mn0.3O2。用XRD、SEM、恒电流充放电、交流阻抗法和循环伏安方法分别研究了不同掺杂量对LiNi0.5Co0.2Mn0.3O2的结构、形貌和其电化学性能的影响。结果表明3%(摩尔分数)的Ti、Zn离子复合掺杂能有效提高LiNi0.5Co0.2Mn0.3O2的倍率放电能力和循环性能。在1C和2C的充放电倍率下,首次放电容量分别为170.4mAh/g和164.8mAh/g,经过50次充放电循环后容量保持率分别为96.3%和94.7%,具有优良的电化学性能。 相似文献
6.
以化学共沉淀法制备出的球形Ni0.5Co0.3Mn0.2CO3前驱体,合成了振实密度高达2.60 g/cm3的球形正极材料LiNi0.5Co0.3Mn0.2O2.研究表明,LiNi0.5Co0.3Mn0.2O2为10 μm左右的球形粉体,为纯相的α-NaFeO2层状结构.在2.7~4.3V,0.2 C倍率进行充放电,LiNi0.5Co0.3Mn0.2O2的首次放电比容量170.2 mAh/g,50次循环后容量保持率为94.3%;在2.7~4.6 V,在0.2 C倍率下放电,首次放电比容量为191.8 mAh/g,循环50次后容量保持率为90.5%.LiNi0.5Co0.3Mn0.2O2的首次循环伏安测试结果和交流阻抗测试结果进一步表明材料具有良好的电化学性能. 相似文献
7.
采用球形Ni0.5Co0.2Mn0.3(OH)2前驱体与Li2CO3混合,通过高温烧结合成层状Li Ni0.5Co0.2Mn0.3O2正极材料,研究了合成时间对材料结构及电化学性能的影响。扫描电子显微镜法(SEM)表明Li Ni0.5Co0.2Mn0.3O2正极材料与前驱体形貌均为理想的球形。X射线衍射光谱法(XRD)分析表明,在不同合成时间下合成的样品均为具有层状结构的纯相物质。电化学性能测试表明,900℃12 h合成的样品具有最优的电化学性能,在2.7~4.4 V电压区间,0.1 C、1 C、5 C的首次放电比容量分别达到195.2、158.4和114.9 m Ah/g,1 C循环10次容量保持率为98.9%。 相似文献
9.
10.
锂离子电池的应用已经非常广泛,掌握锂离子电池快充技术,促进其实际应用,具有广阔的商业前景。在国内外现有研究的基础上,基于锂离子电池本身,详细介绍了快充型锂离子电池的制备技术,并结合目前的实际应用,讨论了锂离子超级电容器,最后对锂离子电池快速充电技术的发展前景做了展望。 相似文献
11.
13.
14.
15.
采用超声波辅助溶胶-凝胶法合成层状的锂离子电池的正极材料LiNi0.5Mn0.5O2,并用热重分析、X射线衍射(XRD)、扫描电子显微镜(SEM)对材料的结构与形貌进行了研究,电化学性能采用循环伏安法(CV)、交流阻抗和充放电测试进行表征.结果表明,在950℃灼烧12 h的材料结晶度比较好,其晶胞参数a=0,287 9 nm,c=1.431 nm,结构比较理想.当材料在2.8~4.2 V间进行充放电时,其首次放电容量为170 mAh/g,50次循环后容量的保持率为89%. 相似文献
16.
采用三元(LiNi1/3Co1/3Mn1/3O2)材料为正极材料、人工石墨为负极制成容量为4500mAh的26650型的高容量锂离子电池,该类型的电池3C放电容量能够达1.0C容量的95%以上,在55℃条件下以0.2C放电,能够放出25℃条件下的99%,1.0C循环测试320次后,容量剩余80%。经过针刺短路之后,没有爆炸和起火,显示了电池具有很大的应用潜力。 相似文献
17.
锂离子蓄电池LiNi0.4Co0.2Mn0.4O2正极材料的合成及性能 总被引:1,自引:0,他引:1
采用共沉淀前驱体法合成锂离子蓄电池正极材料LiNi0.4Co0.2Mn0.4O2,针对材料的制备条件、形貌、密度、晶体结构以及电化学活性方面进行了较系统的研究。对材料进行扫描电子显微镜(SEM)、X射线衍射光谱(XRD)分析以及电性能测试,结果表明样品颗粒均匀,为类球形,振实密度为1.8g/cm3;衍射峰与标准的a-NaFeO2层状结构完全对应,为层状嵌锂复合氧化物;LiNi0.4Co0.2Mn0.4O2在电压2.5~4.3V范围内表现出较好的电化学性能,循环17次后仍保持大约150mAh/g,具有很好的发展前景。 相似文献
18.
采用共沉淀-高温固相合成工艺,将20%(质量分数)的Co和10%(质量分数)的Mn同时掺入,成功地在空气气氛中合成出了层状结构的多元正极材料LiNi0.7Co0.2Mn0.1O2.循环伏安曲线的测试结果表明,Co和Mn的同时掺入抑制了LiNiO2充放电过程中的相变,提高了材料的循环性能.在0.2 C倍率下2.8~4.3 V电压区间内进行充放电测试,结果表明,850℃下处理得到的样品前10次容量几乎没有衰减,均在150 mAh/g左右,循环50次后容量仍然保持在140 mAh/g以上.将充电截止电位提高至4.4 V后,前10次的放电比容量可达170 mAh/g. 相似文献
19.
20.
采用高温固相法在相同条件下合成了LiNi_(0.6)Co_(0.1)Mn_(0.3)O_2与LiNi_(0.6)Co_(0.2)Mn_(0.2)O_2正极材料,利用XRD、SEM表征了材料的结构与形貌,通过恒电流充放电测试、循环伏安(CV)和交流阻抗(EIS)研究了其电化学性能。结果表明,室温条件下以0.2 C倍率在3.0~4.3 V电压范围内,LiNi_(0.6)Co_(0.1)Mn_(0.3)O_2的首次放电比容量为171.8 mAh/g,1 C循环100次后容量保持率为78.5%;LiNi_(0.6)Co_(0.2)Mn_(0.2)O_2的首次放电比容量为174.6 mAh/g,1 C循环100次后容量保持率为83.0%。CV与EIS测试表明,相比LiNi_(0.6)Co_(0.2)Mn_(0.2)O_2,LiNi_(0.6)Co_(0.1)Mn_(0.3)O_2材料有更大的极化与电荷转移阻抗。 相似文献