首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The development of efficient long-term heat storage systems could significantly increase the use of solar thermal energy for building heating. Among the different heat storage technologies, the absorption heat storage system seems promising for this application. To analyze the potential of this technology, a numerical model based on mass, species, energy, and exergy balances has been developed. The evolution over time of the storage imposes a transient approach. Simulations were performed considering temperature conditions close to those of a storage system used for space heating coupled to solar thermal collectors (as the heat source), with ground source heat exchangers (as the cold source). The transient behavior of the system was analyzed in both the charging and discharging phases. This analysis highlights the lowering of energetic and exergetic performance during both phases, and these phenomena are discussed. The thermal efficiency and the energy storage density of the system were determined, equal to 48.4 % and 263 MJ/m3, respectively. The exergetic efficiency is equal to 15.0 %, and the exergy destruction rate is 85.8 %. The key elements in terms of exergy destruction are the solution storage tank, the generator, and the absorber. The impact of using a solution heat exchanger (SHX) was studied. The risk of the solution crystallizing in the SHX was taken into account. With a SHX, the thermal efficiency of the system can reach 75 %, its storage density was 331 MJ/m3, and its exergetic efficiency and exergy destruction rate was 23.2 and 77.3 %, respectively.  相似文献   

2.
《Energy Conversion and Management》2005,46(13-14):2053-2067
This paper presents the exergetic analysis and optimization of a transcritical carbon dioxide based heat pump cycle for simultaneous heating and cooling applications. A computer model has been developed first to simulate the system at steady state for different operating conditions and then to evaluate the system performance based on COP as well as exergetic efficiency, including component wise irreversibility. The chosen system includes the secondary fluids to supply the heating and cooling services, and the analyses also comprise heat transfer and fluid flow effects in detail. The optimal COP and the exergetic efficiency were found to be functions of compressor speed, ambient temperature and secondary fluid temperature at the inlets to the evaporator and gas cooler and the compressor discharge pressure. An optimization study for the best allocation of the fixed total heat exchanger inventory between the evaporator and the gas cooler based on heat transfer area has been conducted. The exergy flow diagram (Grassmann diagram) shows that all the components except the internal heat exchanger contribute significantly to the irreversibilities of the system. Unlike a conventional system, the expansion device contributes significantly to system irreversibility. Finally, suggestions for various improvement measures with resulting gains have been presented to attain superior system performance through reduced component irreversibilities. This study is expected to offer useful guidelines for system design and its optimisation and help toward energy conservation in heat pump systems based on transcritical CO2 cycles.  相似文献   

3.
A computational model is developed for the parametric investigation of single‐effect and series flow double‐effect LiBr/H2O absorption refrigeration systems. The effects of generator, absorber, condenser, evaporator and dead state temperatures are examined on the performance of these systems. The parameters computed are coefficient of performance (COP), exergy destruction rates, thermal exergy loss rates, irreversibility and exergetic efficiency. The results indicate that COP and exergetic efficiency of both the systems increase with increase in the generator temperature. There exist different optimum values of generator temperature for maximum COP and maximum exergetic efficiency. The optimum generator temperature is lower corresponding to maximum exergetic efficiency as compared to optimum generator temperature corresponding to maximum COP. The effect of increase in absorber, condenser and evaporator temperatures is to decrease the exergetic efficiency of both the systems. The irreversibility is highest in absorber in both systems. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

4.
《Exergy》2001,1(2):100-106
A general endoreversible refrigeration cycle model which includes the irreversibility of heat transfer across finite temperature differences and the heat leak loss between the external heat reservoirs is used to analyze the rate of exergy output of a multi-stage combined refrigeration system. The relations between the rates of exergy output and refrigeration and between the rate of exergy output and coefficient of performance are derived. The efficiency of exergy output is calculated. The optimal problems relative to the rate of exergy output are discussed. Some characteristic curves of the refrigeration system are presented. The results obtained here are suitable for an arbitrary-stage endoreversible combined refrigeration system.  相似文献   

5.
In this study, a new solar power assisted multigeneration system designed and thermodynamically analyzed. In this system, it is designed to perform heating, cooling, drying, hydrogen and power generation with a single energy input. The proposed study consists of seven sub-parts which are namely parabolic dish solar collector, Rankine cycle, organic Rankine cycle, PEM-electrolyzer, double effect absorption cooling, dryer and heat pump. The effects of varying reference temperature, solar irradiation, input and output pressure of high-pressure turbine and pinch point temperature heat recovery steam generator are investigated on the energetic and exergetic performance of integration system. Thermodynamic analysis result outputs show that the energy and exergy performance of overall study are computed as 48.19% and 43.57%, respectively. Moreover, the highest rate of irreversibility has the parabolic dish collector with 24,750 kW, while the lowest rate of irreversibility is calculated as 5745 kW in dryer. In addition, the main contribution of this study is that the solar-assisted multi-generation systems have good potential in terms of energy and exergy efficiency.  相似文献   

6.
A compression–absorption cascade system for refrigeration is simulated with different working fluids. LiBr/H2O is used in the absorption cycle and ammonium, R134a and carbon dioxide are evaluated in the compression cycle. First and second laws of thermodynamic analysis were analyzed with the aim of finding the best working fluid performance and appropriate operation parameters. Coefficient of performance, exergetic efficiency, irreversibility of the main components of the system, total irreversibility of the system and improvement potential were estimated for each one of the systems proposed. The results showed that the highest irreversibilities occurred in the cascade heat exchanger using carbon dioxide or ammonium, but this value decreased by using R134a. The highest value of coefficient of performance is observed by the R134a–LiBr/H2O system when the minimum of irreversibility in the absorber and generator are reached within a range of generator temperature from 339 to 345 K. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

7.
In this study, both energetic and exergetic performances of a combined heat and power (CHP) system for vehicular applications are evaluated. This system proposes ammonia-fed solid oxide fuel cells based on proton conducting electrolyte (SOFC-H+) with a heat recovery option. Fuel consumption of combined fuel cell and energy storage system is investigated for several cases. The performance of the portable SOFC system is studied in a wide range of the cell’s average current densities and fuel utilization ratios. Considering a heat recovery option, the system exergy efficiency is calculated to be 60-90% as a function of current density, whereas energy efficiency varies between 60 and 40%, respectively. The largest exergy destructions take place in the SOFC stack, micro-turbine, and first heat exchanger. The entropy generation rate in the CHP system shows a 25% decrease for every 100 °C increase in average operating temperature.  相似文献   

8.
Abstract

Theoretical study on the energetic and exergetic performances of a counter-flow corrugated plate heat exchanger using hybrid nanofluids for the milk chilling application has been done in the present investigation. Magnesia-silver and Alumina-silver nanoparticles have been dispersed in the ethylene glycol–water mixture and propylene glycol–water mixture (20:80 brine solutions) with different particle volume concentration separately. Effect of particle volume concentration and flow rate of the hybrid nanofluid on the heat transfer rate, convective, and overall heat transfer coefficients, mass flow rate of milk, pressure drop, pumping power, entropy generation rate, second law efficiency, irreversibility, irreversibility distribution ratio, non-dimensional exergy (NDE) destruction, and performance index have been studied. It has been observed that heat transfer rate, convective and overall heat transfer coefficients, pressure drop, pumping power, irreversibility, entropy generation rate, second law efficiency, and milk flow rate increase; while NDE destruction, performance index, and irreversibility distribution ratio decrease with the hybrid nanofluid flow rate and the volume concentration of the nanofluid. Within studied ranges, the hybrid nanofluid yields the maximum improvement of heat transfer rate and convective heat transfer coefficient of about 1.6% and 9.4%, respectively, compared to base fluid. It has also been found that silver?+?alumina shows slightly better performance improvement and hence hybrid nanofluid is recommended as a suitable alternative for the milk chilling units.  相似文献   

9.
In this paper,exergy analysis method is developed to assess a Rankine cycle system,by using supercritical CO2 as working fluid and powered by solar energy.The proposed system consists of evacuated solar collectors,throttling valve,high-temperature heat exchanger,low-temperature heat exchanger,and feed pump.The system is designed for utilize evacuated solar collectors to convert solar energy into mechanical energy and hence electricity.In order to investigate and estimate exergy performance of this system,the energy,entropy,exergy balances are developed for the components.The exergy destructions and exergy efficiency values of the system components are also determined.The results indicate that solar collector and high temperature heat exchanger which have low exergy efficiencies contribute the largest share to system irreversibility and should be the optimization design focus to improve system exergy effectiveness.Further,exergy analysis is a useful tool in this regard as it permits the performance of each process to be assessed and losses to be quantified.Exergy analysis results can be used in design,optimization,and improvement efforts.  相似文献   

10.
Jianlin Yu  Gaolei Tian  Zong Xu 《Energy》2009,34(11):1864-1869
In this paper, exergy method is applied to analyze the ejector expansion Joule–Thomson (EJT) cryogenic refrigeration cycle. The exergy destruction rate in each component of the EJT cycle is evaluated in detail. The effect of some main parameters on the exergy destruction and exergetic efficiency of the cycle is also investigated. The most significant exergy destruction rates in the cycle are in the compressor and ejector. The ejector pressure ratio and compressor isothermal efficiency have a significant effect on the exergetic efficiency of the EJT cycle. The exergy analysis results show the EJT cycle has an obvious increase in the exergetic efficiency compared to the basic Joule–Thomson refrigeration cycle. A significant advantage from the use of the ejector is that the total exergy destruction of the EJT cycle can be reduced due to much more decreasing of the exergy destruction rates in the compressor and expansion valve. The exergy analysis also reconfirms that applying an ejector is a very important approach to improve the performance of the Joule–Thomson cryogenic refrigeration cycle.  相似文献   

11.
A tubular solid oxide fuel cell (TSOFC) module fed by methane is modelled and analyzed thermodynamically from the exergy point of view in this paper. The model of TSOFC module consists of mixer, pre-reformer, internal reforming fuel cell group, afterburner and internal pre-heater components. The model of the components forming module is given based on mass, energy and exergy balance equations. The developed thermodynamic model is simulated, and the obtained performance characteristics are compared and validated with the experimental data taken from the literature concerning TSOFC module. For exergetic performance analysis, the effects of operating variables such as current density, pressure, and fuel utilization factor on exergetic performances (module exergy efficiency, module exergetic performance coefficient, module exergy output and total exergy destruction rate, and components' exergy efficiencies, exergy destruction rates) are investigated. From the analysis, it is determined that the biggest exergy loss stems from exhaust gasses. Other important sources of exergy destruction involve fuel cell group and afterburner. Consequently, the developed thermodynamic model is expected to provide not only a convenient tool to determine the module exergetic performances and component irreversibility but also an appropriate basis to design complex hybrid power generation plants.  相似文献   

12.
The goal of this study is to carry out exergy analyses for an experimental variable‐speed refrigeration system working with R404a in order to determine irreversibility rates and exergetic efficiencies of system components and the overall system. For this aim, an experimental refrigeration system was designed with a frequency inverter mounted on compressor electric motor. Controlling the rotational speed of the compressor with a frequency inverter is one of the best methods to vary the capacity of the refrigeration system. The experiments were made for different compressor electric motor frequencies. The results showed that at low‐frequency values, irreversibility rates of the system decreased and exergetic efficiencies were increased. In addition, the major irreversibility occurs in the compressor by 61.47–61.83% followed by condenser by 17.00–16.52%, evaporator by 12.39–13.73% and expansion valve by 6.24–6.76% for different compressor frequencies. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

13.
In this study, the first and the second law of thermodynamics are used to analyze the performance of a single-stage water-lithium bromide absorption refrigeration system (ARS) when some working parameters are varied. A mathematical model based on the exergy method is introduced to evaluate the system performance, exergy loss of each component and total exergy loss of all the system components. Parameters connected with performance of the cycle–circulation ratio (CR), coefficient of performance (COP), Carnot coefficient of performance (COPc), exergetic efficiency (ξ) and efficiency ratio (τ)–are calculated from the thermodynamic properties of the working fluids at various operating conditions. Using the developed model, the effect of main system temperatures on the performance parameters of the system, irreversibilities in the thermal process and non-dimensional exergy loss of each component are analyzed in detail. The results show that the performance of the ARS increases with increasing generator and evaporator temperatures, but decreases with increasing condenser and absorber temperatures. Exergy losses in the expansion valves, pump and heat exchangers, especially refrigerant heat exchanger, are small compared to other components. The highest exergy loss occurs in the generator regardless of operating conditions, which therefore makes the generator the most important component of the cycle.  相似文献   

14.
Exergy analysis of micro-organic Rankine heat engines is performed to identify the most suitable engine for driving a small scale reverse osmosis desalination system. Three modified engines derived from simple Rankine engine using regeneration (incorporation of regenerator or feedliquid heaters) are analyzed through a novel approach, called exergy-topological method based on the combination of exergy flow graphs, exergy loss graphs, and thermoeconomic graphs. For the investigations, three working fluids are considered: R134a, R245fa and R600. The incorporated devices produce different results with different fluids. Exergy destruction throughout the systems operating with R134a was quantified and illustrated using exergy diagrams. The sites with greater exergy destruction include turbine, evaporator and feedliquid heaters. The most critical components include evaporator, turbine and mixing units. A regenerative heat exchanger has positive effects only when the engine operates with dry fluids; feedliquid heaters improve the degree of thermodynamic perfection of the system but lead to loss in exergetic efficiency. Although, different modifications produce better energy conversion and less exergy destroyed, the improvements are not significant enough and subsequent modifications of the simple Rankine engine cannot be considered as economically profitable for heat source temperature below 100 °C. As illustration, a regenerator increases the system’s energy efficiency by 7%, the degree of thermodynamic perfection by 3.5% while the exergetic efficiency is unchanged in comparison with the simple Rankine cycle, with R600 as working fluid. The impacts of heat source temperature and pinch point temperature difference on engine’s performance are also examined. Finally, results demonstrate that energy analysis combined with the mathematical graph theory is a powerful tool in performance assessments of Rankine based power systems and permits meaningful comparison of different regenerative effects based on their contribution to systems improvements.  相似文献   

15.
In this article, an extensive thermodynamic performance assessment for the useful products from the solar tower and high-temperature steam electrolyzer assisted multigeneration system is performed, and also its sustainability index is also investigated. The system under study is considered for multi-purposes such as power, heating, cooling, drying productions, and also hydrogen generation and liquefaction. In this combined plant occurs of seven sub-systems; the solar tower, gas turbine cycle, high temperature steam electrolyzer, dryer process, heat pump, and absorption cooling system with single effect. In addition, the energy and exergy performance, irreversibility and sustainability index of multigeneration system are examined according to several factors, such as environment temperature, gas turbine input pressure, solar radiation and pinch point temperature of HRSG. Results of thermodynamic and sustainability assessments show that the total energetic and exergetic efficiency of suggested paper are calculated as 60.14%, 58.37%, respectively. The solar tower sub-system has the highest irreversibility with 18775 kW among the multigeneration system constituents. Solar radiation and pinch point temperature of HRSG are the most critical determinants affecting the system energetic and exergetic performances, and also hydrogen production rate. In addition, it has been concluded that, the sustainability index of multigeneration suggested study has changed between 2.2 and 3.05.  相似文献   

16.
In this work, an experimental and theoretical investigation of a frozen and hot water production unit with direct gas absorption is developed. Water/ammonia couple is used.A particular interest is given to the system performances evaluation such as exergetic efficiency and total exergy loss. Parameters analyzed are coefficients of performance, irreversibility and exergetic efficiency.Results show that the machine can reach a COP up to 65% and exergetic efficiency up to 18% for a working temperature and a condensation temperature of 120 °C and 18 °C, respectively. These performances decrease for a condensation temperature of 37 °C and 47 °C. Indeed, the engine is less efficient and presents more irreversibility, which is major in the pre-absorber and the absorber.An improvement of the machine cycle is proposed, in order to adapt it to low grade heat sources, using a compressor upstream of the pre-absorber. Performances of the new hybrid cycle are better than those of the real cycle.  相似文献   

17.
In this paper, the thermodynamic study of a combined geothermal power-based hydrogen generation and liquefaction system is investigated for performance assessment. Because hydrogen is the energy of future, the purpose of this study is to produce hydrogen in a clear way. The results of study can be helpful for decision makers in terms of the integrated system efficiency. The presented integrated hydrogen production and liquefaction system consists of a combined geothermal power system, a PEM electrolyzer, and a hydrogen liquefaction and storage system. The exergy destruction rates, exergy destruction ratios and exergetic performance values of presented integrated system and its subsystems are determined by using the balance equations for mass, energy, entropy, energy and exergy and evaluated their performances by means of energetic and exergetic efficiencies. In this regard, the impact of some design parameters and operating conditions on the hydrogen production and liquefaction and its exergy destruction rates and exergetic performances are investigated parametrically. According to these parametric analysis results, the most influential parameter affecting system exergy efficiency is found to be geothermal source temperature in such a way that as geothermal fluid temperature increases from 130 °C to 200 °C which results in an increase of exergy efficiency from 38% to 64%. Results also show that, PEM electrolyzer temperature is more effective than reference temperature. As PEM electrolyzer temperature increases from 60 °C to 85 °C, the hydrogen production efficiency increases from nearly 39% to 44%.  相似文献   

18.
This work presents an energetic and exergetic analysis of an upgraded frigorific production unit, operating with a novel organic mixture: DMAC/R124 (N, N′-dimethylacetamide/2-chloro-1,1,1,2-tetrafluoroethane). Investigated parameters are the COP (performance coefficient), the irreversibility and the exergetic efficiency. Performances of the proposed mixture system are compared with those relative to the classical water/ammonia system. Results show that the COP obtained with the new fluids is similar to that relative to the old one, it is about 64% for a compression ratio about 2, while the same optimum value is achieved with a compression ratio about 3.3 when working with ammonia/water. Furthermore, the system using the new proposed couple uses lower threshold temperatures, between 60 °C and 80 °C as optimum COP, which allows the use of low temperature energy sources.Results of the exergetic analysis indicate that irreversibility of the R124/DMAC system is lower than that of the ammonia/water system by about 5 kW and so is the exergetic efficiency. It is noted from this study that the major gain brought by this new couple is the diminution of the operating temperatures of this type of heat pumps from temperatures going to 120 °C–80 °C and even 60 °C. We retain the advantages of introducing this organic absorbent (DMAC) in the refrigeration production field.  相似文献   

19.
Y.B. Tao  Y.L. He  W.Q. Tao 《Applied Energy》2010,87(10):3065-3072
The experimental system for the transcritical CO2 residential air-conditioning with an internal heat exchanger was built. The effects of working conditions on system performance were experimentally studied. Based on the experimental dada, the second law analysis on the transcritical CO2 system was performed. The effects of working conditions on the total exergetic efficiency of the system were investigated. The results show that in the studied parameter ranges, the exergetic efficiency of the system increases with the increases of gas cooler side air inlet temperature, gas cooler side air inlet velocity and evaporating temperature. And it will decrease with the increases of evaporator side air inlet temperature and velocity. Then, a complete exergetic analysis was performed for the entire CO2 transcritical cycle including compressor, gas cooler, expansion valve, evaporator and internal heat exchanger under different working conditions. The average exergy loss in gas cooler is the highest one under all working conditions which is about 30.7% of the total exergy loss in the system. The second is the average exergy loss in expansion valve which is about 24.9% of the total exergy loss, followed by the exergy losses in evaporator and compressor, which account for 21.9% and 19.5%, respectively. The exergy loss in internal heat exchanger is the lowest one which is only about 3.0%. So in the optimization design of the transcritical CO2 residential air-conditioning system more attentions should be paid to the gas cooler and expansion valve.  相似文献   

20.
This paper presents an optimization study of a single stage absorption machine operating with an ammonia–water mixture under steady state conditions. The power in the evaporator, the temperatures of the external fluids entering the four external heat exchangers as well as the effectiveness of these heat exchangers and the efficiency of the pump are assumed fixed. The results include the minimum value of the total thermal conductance UAtot as well as the corresponding mean internal temperatures, overall irreversibility and exergetic efficiency for a range of values of the coefficient of performance (COP). They show the existence of three optimum values of the COP: the first minimises UAtot, the second minimises the overall irreversibility and the third maximises the exergetic efficiency. They also show that these three COP values are lower than the maximum COP which corresponds to the convergence of the internal and external temperatures towards a common value. The influence of various parameters on the minimum thermal conductance of the heat exchangers and on the corresponding exergy efficiency has also been evaluated. From an exergetic viewpoint it is interesting to reduce the temperature at the desorber and at the evaporator and to raise the values of that parameter at the condenser and the absorber. However these changes must be accompanied by an important increase in the total UA if it is desired to conserve a constant COP. The internal heat exchangers between the working fluid and the solution improve both the overall exergy efficiency and the coefficient of performance of the absorption apparatus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号