首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 388 毫秒
1.
The objective of this study was to produce low saturated, zero‐trans, interesterified fats with 20 or 30 % saturated fatty acids (SFA) such as C16:0 or C18:0. Tripalmitin (TP) or tristearin (TS) was blended with high oleic sunflower oil (HOSO) at different ratios (0.1:1, 0.3:1, and 0.5:1 [w/w]). Total C16:0 and C18:0 compositions of the resulting TP/HOSO and TS/HOSO blends, respectively, were plotted against blending ratios. Linear interpolation was used to estimate blending ratios that would yield physical blends (PB) with 20 or 30 % SFA. Interesterified blends (IB) were then synthesized from the customized PB using Lipozyme TL IM as the biocatalyst. Total and sn‐2 fatty acid compositions, triacylglycerol (TAG) molecular species, thermal behavior, and oxidative stability of PB and IB were compared. The total fatty acid compositions of PB and IB were similar but fatty acid positional distributions and TAG molecular species composition differed. IB contained 5–10 % more SFA at the sn‐2 position than corresponding PB. Furthermore, interesterification generated mono‐ and disaturated TAG species which resulted in broader melting profiles for IB. However, IB had lower oxidative stability than PB. The reformulation of food products with zero‐trans interesterified fats may be advantageous to the reduction of cardiovascular disease burden in the population.  相似文献   

2.
The fatty acid distribution of triacylglycerols (TAG) and major phospholipids (PL) within soybean seeds (Glycine max L.) was investigated in relation to their tocopherol contents. The lipids extracted from four cultivars were separated by thin‐layer chromatography into seven fractions. Tocopherols were predominantly detected in the axis, followed by cotyledons and seed coat. The major lipid components were TAG and PL, while hydrocarbons, steryl esters, free fatty acids and diacylglycerols (sn‐1,3 and sn‐1,2) were also present in minor proportions. With a few exceptions, the dominant PL components were phosphatidylcholine, followed by phosphatidylethanolamine or phosphatidylinositiol. Significant differences (p <0.05) in fatty acid distribution existed when different soybean cultivars were examined. However, the principal characteristics of the fatty acid distribution in the TAG were evident among four cultivars; unsaturated fatty acids were predominantly concentrated in the sn‐2 position, and saturated fatty acids primarily occupied the sn‐1 or sn‐3 position in the oils of the soybeans.  相似文献   

3.
This study examines the incorporation of highly unsaturated n−3 fatty acids (HUFA) into triacylglycerols (TAG) of brown adipose tissue (BAT), and their effect on the positional distribution of saturated (SFA) and of unsaturated (UFA) 16- or 18-carbon fatty acids. To this end, rats were fed a fish oil diet for up to four weeks. The stereospecific analysis of TAG was based on generation ofsn-1,2- andsn-2,3-acylglycerols by Grignard degradation, followed by synthesis of phosphatidic acid and specific hydrolysis with phospholipase A2. From the end of the first week of fish oil feeding, a steady-state in the fatty acid composition of TAG in BAT was reached. HUFA concentration increased 30-fold, mainly at the expense of n−9 UFA and of SFA. The amount of SFA decreased selectively at position 3, where these fatty acids were progressively replaced by n−3 HUFA. By contrast, the amount of UFA decreased at all positions, and their positional distribution was not affected. About 60% of HUFA was incorporated at position 3. Nearly twice as much 22∶6n−3 was incorporated into TAG than had been previously observed in white adipose tissue (WAT) [Leray, C., Raclot, T., and Groscolas, R. (1993)Lipids 28, 279–284]. At the steady-state, the distribution of HUFA was characterized by high proportions of 22∶6n−3 and 20∶5n−3 in position 3. Moreover, in each position of TAG, a steady level was reached rapidly (within 1 wk). It is concluded that, during fish-oil feeding, fatty acids in TAG of BAT show characteristic time-course changes that lead to a characteristic composition and a tissue-specific positional distribution. This suggests that adipose tissue has its own specificity in controlling the build-up of TAG stores, which is likely to be regulated by the specificity of acylating enzymes as well as molecular rearrangements.  相似文献   

4.
Triacylglycerol structure of human colostrum and mature milk   总被引:2,自引:0,他引:2  
Because triacylglycerol (TAG) structure influences the metabolic fate of its component fatty acids, we have examined human colostrum and mature milk TAG with particular attention to the location of the very long chain polyunsaturated fatty acid on the glycerol backbone. The analysis was based on the formation of various diacylglycerol species from human milk TAG upon chemical (Grignard degradation) or enzymatic degradation. The structure of the TAG was subsequently deduced from data obtained by gas chromatographic analysis of the fatty acid methyl esters in the diacylglycerol subfractions. The highly specific TAG structure observed was identical in mature milk and colostrum. The three major fatty acids (oleic, palmitic and linoleic acids) each showed a specific preference for a particular position within milk TAG: oleic acid for thesn-1 position, palmitic acid for thesn-2 position and linoleic acid for thesn-3 position. Linoleic and α-linolenic acids exhibited the same pattern of distribution and they were both found primarily in thesn-3 (50%) andsn-1 (30%) positions. Their longer chain analogs, arachidonic and docosahexaenoic acids, were located in thesn-2 andsn-3 positions. These results show that polyunsaturated fatty acids are distributed within the TAG molecule of human milk in a highly specific fashion, and that in the first month of lactation the maturation of the mammary gland does not affect the milk TAG structure.  相似文献   

5.
6.
Menhaden oil (MO) and partially hydrogenated menhaden oil (PHMO) were dry-fractionated and solvent-fractionated from acetone. After conversion to fatty acid methyl esters, the compositional distribution of saturated, monounsaturated, trans, and n−3 polyunsaturated fatty acids (PUFA) in the isolated fractions was determined by gas chromatography. Acetone fractionation of MO at −38°C significantly increased the n−3 PUFA content in the liquid fractions over that of starting MO (P<0.05). For PHMO, liquid fractions obtained by low-temperature crystallization (−38, −18, and 0°C) from acetone showed significant increases (P<0.05) in monounsaturated fatty acid (MUFA) content over that of the starting PHMO. For selected MUFA-enriched fractions, reversed-phase high-performance liquid chromatography (HPLC) was used to separate, isolate, and characterize the major triacylglycerol (TAG) molecular species present. Thermal crystallization patterns for these fractions also were determined by differential scanning calorimetry (DSC). The results demonstrated that under the appropriate conditions it is possible to dry-fractionate or solvent-fractionate MO and PHMO into various solid and liquid fractions that are enriched in either saturated, monounsaturated, polyunsaturated, or the n−3 classes of fatty acids. Moreover, characterization of these TAG fractions by reversed-phase HPLC gives insight into the compositional nature of the TAG that are concentrated into the various fractions produced by these fractionation processes. Finally, the DSC crystallization patterns for the fractions in conjunction with their fatty acid compositional data allow for the optimization of the fractionation schemes developed in this study. This information allows for the production of specific TAG fractions from MO and PHMO that are potentially useful as functional lipid products.  相似文献   

7.
Gas chromatography (GC) has been a standard analytical tool in lipid chemistry. The rapid attenuated total reflection (ATR) infrared (IR) American Oil Chemists’ Society (AOCS) Recommended Practice (Cd 14d-97) was compared to the capillary GC AOCS Recommended Practice (Ce 1f-97) that was optimized to accurately determine total trans fatty acids on highly polar stationary phases. This comparative evaluation was validated in an independent laboratory. These procedures were used to quantitate the total trans fatty acid levels in partially hydrogenated vegetable oils, measured as neat (without solvent) triacylglycerols (TAG) by ATR and as fatty acid methyl ester (FAME) derivatives by capillary GC. Unlike FAME, TAG determination by ATR required no derivatization, but samples had to be melted prior to measurement. Five blind replicates for each of three accuracy standards and three test samples were analyzed by each technique. The GC and ATR determinations were in good agreement. Accuracy was generally high. The ratios of ATR mean trans values (reported as percentage of total TAG) to the true values (based on the amount of trielaidin added gravimetrically) were 0.89, 0.98, and 1.02 for accuracy standards having about 1, 10, and 40% trans levels. The corresponding GC values, determined as percentage of total FAME, were 0.98, 0.99 and 1.04. The ratios of mean trans values determined by these techniques were ATR/GC 0.85, 1.04, and 1.01 for test samples having trans levels of about 0.7, 8, and 38%, respectively. The optimized GC procedure also minimzed the expected low bias in trans values due to GC peak overlap found with the GC Official Method Ce 1c-89. Satisfactory repeatability and reproducibility were obtained by both ATR and GC.  相似文献   

8.
Changes in composition were examined in oils extracted from genetically modified sunflower and soybean seeds. Improvements were made to the analytical methods to accomplish these analyses successfully. Triacylglycerols (TAG) were separated on two 300 mm × 3.9 mm 4μ Novapak C18 high-performance liquid chromatography (HPLC) columns and detected with a Varex MKIII evaporative light-scattering detector. Peaks were identified by coelution with known standards or by determining fatty acid composition of eluted TAG by capillary gas chromatography (GC). Stereospecific analysis (fatty acid position) was accomplished by partially hydrolyzing TAG with ethyl magnesium bromide and immediately derivatizing the resulting diacylglycerols (DAG) with (S)-(+)-1-(1-naphthyl)ethyl isocyanate. The derivatized sn-1,2-DAG were completely resolved from the sn-2,3-DAG on two 25 mm × 4.6 mm 3 μ silica HPLC columns. The columns were chilled to −20°C to obtain baseline resolution of collected peaks. The distribution of fatty acids on each position of the glycerol backbone was derived from the fatty acid compositions of the two DAG groups and the unhydrolyzed oil. Results for the sn-2 position were verified by hydrolyzing oils with porcine pancreatic lipase, isolating the resulting sn-2 monoacylglycerols by TLC, and determining the fatty acid compositions by GC. Results demonstrated that alterations in the total fatty acid composition of these seed oils are determined by the concentration of TAG species that contain at least one of the modified acyl groups. As expected, no differences were found in TAG with fatty acid quantities unaffected by the specific mutation. In lieu of direct metabolic or enzymatic assay evidence, the authors’ positional data are nevertheless consistent with TAG biosynthesis in these lines being driven by the mass action of available acyl groups and not by altered specificity of the acyltransferases, the compounds responsible for incorporating fatty acids into TAG.  相似文献   

9.
The unsaturated fatty acyl moieties of TAG present in natural oils of borage, olive, and rice were converted to their corresponding geometrical trans isomers by thiyl radical-catalyzed isomerization. Thiyl radicals were generated from 2-mercaptoethanol under photolytic or thermal conditions. A relevant feature of this method is the absence of double-bond shifts, so that no positional trans isomers or conjugated polyenes are formed. Oils obtained after the isomerization were winterized to further increase their trans fatty acid content. Methanolysis and hydrolysis of the trans oil mixtures using an enzymatic method (lipase B from Candida antarctica) gave good conversions to the corresponding trans FAME and fatty acids, respectively. These results are relevant for the studies of lipid isomerism and trans fatty acid recognition, which is a growing concern in biochemistry and nutrition, and open new perspectives for the synthesis of glycerides and studies of their structure-activity relationships.  相似文献   

10.
The fatty acid composition, totaltrans content (i.e., sum of all the fatty acids which may have one or moretrans double bonds) and geometric and positional isomer distribution of unsaturated fatty acids of 198 human milk samples collected in 1992 from nine provinces of Canada were determined using a combination of capillary gas-liquid chromatography and silver nitrate thin-layer chromatography. The mean totaltrans fatty acid content was 7.19±3.03% of the total milk fatty acids and ranged from 0.10 to 17.15%. Twenty-five of the 198 samples contained more than 10% totaltrans fatty acids, and thirteen samples contained less than 4%. Totaltrans isomers of linoleic acid were 0.89% of the total milk fatty acids with 18∶2Δ9c, 13t being the most prevalent isomer, followed by 18∶2Δ9c, 12t and 18∶2Δ9t, 12c. Using the totaltrans values in human milk determined in the present study, the intake of totaltrans fatty acids from various dietary sources by Canadian lactating women was estimated to be 10.6±3.7 g/person/d, and in some individuals, the intake could be as high as 20.3 g/d. The 18∶1trans isomer distribution differed from that of cow's milk fat but was remarkably similar to that in partially hydrogenated soybean and canola oils, suggesting that partially hydrogenated vegetable oils are the major source of thesetrans fatty acids.  相似文献   

11.
The presence oftrans fatty acids in human milk may be a concern because of their possible adverse nutritional and physiological effects on the recipient infant. The mother's diet is the source of human milktrans fatty acids, and since these fatty acids are prevalent in many common foods of the Canadian diet, thetrans fatty acid content and the fatty acid composition of Canadian human milk were measured by gas-liquid chromatography coupled with silver nitrate-thin layer chromatography. In samples obtained from 198 lactating mothers across Canada, the average percentage of totaltrans (sum oft18∶1,t18∶2, andt18∶3) was 7.2% of breast milk fatty acids with a range of 0.1–17.2%. Analysis oft18∶1 isomer distribution indicated that partially hydrogenated vegetable oils are the major source of thesetrans fatty acids in human milk, whereas contribution from dairy products appeared to be relatively minor. Linoleci and α-linolenic acid levels were inversely related to the totaltrans fatty acids, indicating that the elevation oftrans fatty acids in Canadian human milk is at the expense of n-3 and n-6 essential fatty acids. Levels of arachidonic and docosahexaenoic acids did not correlate with their parent fatty acids, indicating that it might be difficult to elevate the levels of n-6 and n-3 C20–22 polyunsaturated fatty acids in breast milk by increasing levels of linoleic and α-linolenic acids in the mother's diet.  相似文献   

12.
Oils from the seeds of caraway (Carum carvi), carrot (Daucus carota), celery (Apium graveolens) and parsley (Petroselinum crispum), all from the Apiaceae family, were analyzed by gas chromatography for their triacylglycerol (TAG) composition and fatty acid (FA) distribution between the sn‐1(3) and sn‐2 positions of TAG. Twenty‐two TAG species were quantified. Glyceryl tripetroselinate was the major TAG species in seed oils of carrot, celery and parsley, with levels ranging from 38.7 to 55.3%. In caraway seed oil, dipetroselinoyllinoleoylglycerol was the major TAG species at 21.2%, while the glyceryl tripetroselinate content was 11.4%. Other TAG species were linoleoyloleoylpetroselinoylglycerol and dipetroselinoyloleoylglycerol. Predominantly, TAG were triunsaturated (72.2–84.0%) with diunsaturates at 14.4–25.9%, and small amounts of monounsaturated TAG. Results for regiospecific analysis showed a non‐random FA distribution in Apiaceae for palmitic, petroselinic, linoleic and oleic acids. Petroselinic acid was predominantly located at the sn‐1(3) position in carrot, celery and parsley seed oils, while it was mainly at the sn‐2 position in caraway seed oil. The distribution of linoleic acid was opposite to that of petroselinic acid. Oleic acid was mostly located at the sn‐2 position, except for caraway, where it was evenly distributed between the sn‐1(3) and sn‐2 positions. Both the saturated FA, palmitic and stearic acid, were located mainly at the sn‐1(3) position. The presence of a high level of tripetroselinin in parsley seed oil (55.3%) makes it a potential source for the production of petroselinic acid.  相似文献   

13.
The triacylglycerols (TAG) containing dihydroxy fatty acids have been recently identified by mass spectrometry in castor oil. These new dihydroxy fatty acids were proposed as 11,12-dihydroxy-9-octadecenoic acid (diOH18:1), 11,12-dihydroxy-9,13-octadecadienoic acid (diOH18:2) and 11,12-dihydroxyoctadecanoic acid (diOH18:0). The ratios of regioisomers of the TAG were estimated by fragment ions from the loss of fatty acids at the sn-2 position as α,β-unsaturated fatty acids by electro spray ionization-mass spectrometry of the lithium adducts (MS3). The content of regioisomeric diOH18:1-OH18:1-diOH18:1 (ABA, with two different fatty acids) was about 92% in the total of stereoisomeric diOH18:1-OH18:1-diOH18:1, OH18:1-diOH18:1-diOH18:1 and diOH18:1-diOH18:1-OH18:1 combined. The approximate contents of other regioisomers were as follows: diOH18:1-OH18:1-OH18:1 (92%), diOH18:1-diOH18:0-diOH18:1 (91%), diOH18:2-OH18:1-OH18:1 (80%) and diOH18:0-OH18:1-OH18:1 (96%). The ratios of regioisomers of TAG (ABC) containing three different fatty acids were estimated as about 7:1:2 (OH18:1:diOH18:1:diOH18:2) and about 7:2:1 (OH18:1:diOH18:0:diOH18:1). Ricinoleate (OH18:1) was predominately at the sn-2 position of TAG (both AAB and ABC) containing dihydroxy fatty acids and ricinoleate. Dihydroxy fatty acids were mainly at the sn-1,3 positions of TAG containing dihydroxy fatty acids and ricinoleate in castor oil. The ratios of the three regioisomers of TAG (ABC) containing three different fatty acids by mass spectrometry are first reported here.  相似文献   

14.
Human milk triacylgycerols (TAG) were analyzed by tandem mass spectrometry. The SIMPLEX method and a simple linear model were used to interpret the distribution of fatty acids between thesn-2 andsn-1,3 positions in 24 major molecular weight groups of TAG. The number of regio-isomeric pairs of TAG varied between 3 and 18 in each of these groups. Hexadecanoic (16∶0), tetradecanoic (14∶0) and dodecanoic acids (12∶0) typically occupied thesn-2 position in TAG containing less than 54 acyl carbons, whereas long-chain C18 and C20 acids were predominantly located at the primary positions. The positions of the three fatty acids within a TAG molecule were shown to depend on the fatty acid combination. The maximum of 12∶0 in thesn-2 position appeared at acyl carbon number (ACN) 48, the maxima of 14∶0 were at ACN 44 and ACN 50, and for 16∶0 at ACN 46 and 52.  相似文献   

15.
Soybean oil was partially hydrogenated using Pt supported in microporous zeolite ZSM-5 and on mesoporous alumina at various IV. Their fatty acid and triacylglycerol composition were determined with GC and HPLC, respectively, and their physical characteristics were monitored by the slip melting point, solid fat content, melting and crystallization thermograms, polymorphism behavior, and the crystal and solid fat network formation. Both the chemical and physical properties were compared with commercial fat samples. Usage of Pt instead of Ni results in a significant reduction in trans fatty acids in the hardened fat. Moreover, the catalyst support of Pt, viz. zeolite ZSM-5 versus γ-alumina, markedly affects the TAG composition. Pt/alumina fats contain large amounts of SSS and polyunsaturates (PUFA), making them unsuitable for shortening application. Because of the (regio)selective hydrogenation property of Pt/ZSM-5, sn-2 unsaturates are hydrogenated faster, yielding an enrichment of intermediately reduced TAG. In addition, this unique fat composition shows a high nutritional added-value (high content of oleate, very low content of trans fatty acids, and low content of cholesterol-raising palmitate and myristate) and high thermal stability (very low in linolenate). Moreover, their melting characteristics perfectly match those of commercial shortenings. Pt/zeolite hardened soybean oil contains spherulitic crystals with orthorhombic β′ molecular packing, arranged in an open, flexible solid network, in accordance with their high plasticity.  相似文献   

16.
Regiospecific distributions of fatty acids of triacylglycerols (TAG) and phospholipids (PL) separated from broad beans (Vicia faba) of four cultivars (Minpo, Sanuki, Nintoku and Sanren) were investigated. The major lipid components were PL (47.5–50.5 wt‐%) and TAG (47.7–50.1 wt‐%), while steryl esters, hydrocarbons, free fatty acids, diacylglycerols and monoacylglycerols were present in minor proportions (1.6–2.4 wt‐%). The PL components isolated from the four cultivars were phosphatidylcholine (56.4–58.4 wt‐%), phosphatidylethanolamine (20.3–21.7 wt‐%) and phosphatidylinositol (16.6–18.6 wt‐%). Phosphatidylinositol was unique in that it had the highest saturated fatty acid content among these PL. The principal characteristics of the fatty acid distribution in the TAG and PL were evident in the beans: Unsaturated fatty acids were predominantly concentrated in the sn‐2 position while saturated fatty acids primarily occupied the sn‐1 or sn‐3 position in these lipids. The lipid components and fatty acid distributions were almost the same in the four cultivars and were not influenced by genetic variability and planting location. These results could be useful information to both consumers and producers for the manufacture of traditional broad bean foods in Japan.  相似文献   

17.
We investigated the influence of the intramolecular fatty acid distribution of dietary triacyl-sn-glycerols (TAG) rich in n-3 polyunsaturated fatty acids (PUFA) on the structure of chylomicron TAG. Fish oil and seal oil, comparable in fatty acid compositions but with different contents of major n-3 PUFA esterified at thesn-2 position (20:5n-3, 46.6%, and 5.3%; 22:6n-3, 75.5%, and 3.8%, respectively), were fed to rats. Mesenteric lymph was collected and the chylomicrons were isolated by ultracentrifugation. The fatty acid composition of chylomicrons largely reflected the fatty acid composition of the oils administered. The intramolecular fatty acid distributions of the TAG fed were reflected in the chylomicron TAG as the fraction of the total contents observed in thesn-2 position of 20:5n-3 were 23.6 and 13.3%, and of 22:6n-3 were 30.6 and 5.4% for resultant chylomicrons following fish oil and seal oil administration, respectively. Thus, after seal oil administration, significant higher load of n-3 PUFA was esterified in thesn-1,3 positions of chylomicron TAG compared with fish oil administration (P<0.05).  相似文献   

18.
The lipid profiles of the two most important New Zealand marine oil sources were investigated, with particular attention to the regioisomeric compositions of triacylglycerides (TAG), using 13C-nuclear magnetic resonance analysis. Oils from hoki (Macruronus novaezelandiae) and Greenshell™ mussel (Perna canaliculus) (GSM) were analyzed for their lipid content, lipid class and fatty acid profile. The regiospecific distribution of long chain (C ≥ 20) polyunsaturated fatty acids (LC-PUFA) between the sn-1,3 and sn-2 glycerol positions was calculated from 13C responses in the carbonyl region in the triacylglycerol fraction. Rendered hoki oil (RHO) produced from the viscera and filleting discards, had a similar lipid profile to that of hoki liver oil (HLO) confirming that the liver is the major source of oil in RHO. The regioisomeric distribution of fatty acids showed differences between the two oil sources. Docosahexaenoic acid (DHA) had a regioisomeric distributional preference to the sn-2 position in TAG from all the oils (59.2% HLO, 54.3% RHO and 63.4% GSM). Eicosapentaenoic acid (EPA) had a more even distribution along the triacylglycerol backbone in hoki TAG (29.1% HLO, 33.6% RHO) while there was a slight sn-2 positional preference in the GSM TAG (37.6%). This regioisomeric information is vital to distinguish LC-PUFA-rich marine oils from other marine sources for authentication purposes.  相似文献   

19.
The sn position of fatty acids in seed oil lipids affects physiological function in pharmaceutical and dietary applications. In this study the composition of acyl-chain substituents in the sn positions of glycerol backbones in triacylglycerols (TAG) have been compared. TAG from native and transgenic medium-chain fatty acid-enriched rape seed oil were analyzed by reversed-phase high performance liquid chromatography coupled with online atmospheric-pressure chemical ionization ion-trap mass spectrometry. The transformation of summer rape with thioesterase and 3-ketoacyl-[ACP]-synthase genes of Cuphea lanceolata led to increased expression of 1.5% (w/w) caprylic acid (8:0), 6.7% (w/w) capric acid (10:0), 0.9% (w/w) lauric acid (12:0), and 0.2% (w/w) myristic acid (14:0). In contrast, linoleic (18:2n6) and alpha-linolenic acid (18:3n3) levels decreased compared with the original seed oil. The TAG sn position distribution of fatty acids was also modified. The original oil included eleven unique TAG species whereas the transgenic oil contained sixty. Twenty species were common to both oils. The transgenic oil included trioctadecenoyl-glycerol (18:1/18:1/18:1) and trioctadecatrienoyl-glycerol (18:3/18:3/18:3) whereas the native oil included only the latter. The transgenic TAG were dominated by combinations of caprylic, capric, lauric, myrisitic, palmitic (16:0), stearic (18:0), oleic (18:1n9), linoleic, arachidic (20:0), behenic (22:0), and lignoceric acids (24:0), which accounted for 52% of the total fat. In the original TAG palmitic, stearic, oleic, and linoleic acids accounted for 50% of the total fat. Medium-chain triacylglycerols with capric and lauric acids combined with stearic, oleic, linoleic, alpha-linolenic, arachidic, and gondoic acids (20:1n9) accounted for 25% of the transgenic oil. The medium-chain fatty acids were mainly integrated into the sn-1/3 position combined with the essential linoleic and alpha-linolenic acids at the sn-2 position. Eight species contained caprylic, capric, and lauric acids in the sn-2 position. The appearance of new TAG in the transgenic oil illustrates the extensive effect of genetic modification on fat metabolism by transformed plants and offers interesting possibilities for improved enteral applications.  相似文献   

20.
In this work the molecular fatty components of Pecorino Sardo Protected Designation of Origin (PS PDO) cheese were characterized through an exhaustive investigation of the 1H- and 13C-NMR spectra of the extracted lipids. Several fatty acids (FA), such as long chain saturated, oleic, linoleic, linolenic, butyric, capric, caprylic, caproic, trans vaccenic, conjugated linoleic acid (cis9, trans11–18:2), and caproleic (9–10:1) were unambiguously detected. The positional isomery of some acyl groups in the glycerol backbone of triacylglycerols (TAG) was assessed. Furthermore, the NMR signals belonging to sn-1,2/2,3, sn-1,3 diacylglycerols (DAG), and free fatty acids (FFA) were analysed as a measure of lipolytic processes on cheese. Lastly, 1H-NMR resonances of saturated aldehydes and hydroperoxides were detected, their very low intensity indicating that the lipid oxidation process can be considered to be of minor relevance in Pecorino Sardo cheese.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号