共查询到20条相似文献,搜索用时 15 毫秒
1.
The acquisition rate of all scanning probe imaging techniques with feedback control is limited by the dynamic response of the control loops. Performance criteria are the control loop bandwidth and the output signal noise power spectral density. Depending on the acceptable noise level, it may be necessary to reduce the sampling frequency below the bandwidth of the control loop. In this work, the frequency response of a vacuum Kelvin force microscope with amplitude detection (AM-KFM) using a digital signal processing (DSP) controller is characterized and optimized. Then, the main noise source and its impact on the output signal is identified. A discussion follows on how the system design can be optimized with respect to output noise. Furthermore, the interaction between Kelvin and distance control loop is studied, confirming the beneficial effect of KFM on topography artefact reduction in the frequency domain. The experimental procedure described here can be generalized to other systems and allows to locate the performance limitations. 相似文献
2.
Gustavo Da Silva Rita Serrano Elsa Teixeira Gomes Olga Silva 《Microscopy research and technique》2015,78(11):1001-1009
Gymnosporia arenicola Jordaan (Celastraceae) is a shrub or small tree, which naturally occurs in coastal sand dunes of Southern Mozambique and South Africa. Its dried leaf is often used in traditional medicine for the treatment of infectious and inflammatory diseases. Hereby, we present results of studies carried out according to the pharmacopoeia standards for the identification of herbal drugs, in the whole, fragmented, and powdered plant material. These results were complemented with scanning electron microscopy and histochemical techniques. The leaf microscopic analysis revealed a typical dorsiventral mesophyll with a corresponding spongy parenchyma–palisade parenchyma ratio of 0.60, anomocytic and paracytic stomata, papillate cells with a diameter of 4.00 ± 0.40 µm, multicellular uniseriate nonglandular trichomes with a length of 27.00 ± 4.10 µm and cristalliferous idioblasts containing calcium oxalate cluster crystals with a diameter of 23.04 ± 5.84 µm. The present findings demonstrate that the G. arenicola leaf has both nonglandular trichomes and hypoderm, features not previously described in the corresponding botanical section (Gymnosporia sect. Buxifoliae Jordaan). The establishment of these new botanical markers for the identification of G. arenicola leaf is essential for quality, safety and efficacy reasons. Microsc. Res. Tech. 78:1001–1009, 2015. © 2015 Wiley Periodicals, Inc. 相似文献
3.
A combination of electric force microscopy (EFM) and noncontact atomic force microscopy (AFM) was used to study microscratching-induced dislocations in sphaleritic ZnS single crystals. Dislocation bands predominantly consisting of either anion-type (S) or cation-type (Zn) dislocations were induced by scratching along either [111] or [111] on a (110) surface. A significant difference of local distortions in electrical potential between the S(g) and Zn(g) dislocation bands was observed from the EFM images. Electric charges of these dislocations were determined quantitatively and the results were compared with theoretical models. 相似文献
4.
Artefacts that affect contrast and arise from adhesion forces in atomic force microscopy images of aramid fibres (both fresh and plasma-treated) are investigated. It is demonstrated that these stem not only from variations in the chemical composition of the surface but also from certain topographical features (which may appear hidden or enhanced in the images), resulting in changes in the lateral forces that are detected by the cantilever and are comparable to the vertical forces. It is also shown that both types of contribution to the forces can be uncoupled to yield images free from these artefacts, thus allowing more accurate quantitative measurements. These artefactual effects are also generally applicable to many other materials. 相似文献
5.
Atomic force microscopy (AFM) and lateral force microscopy (LFM) were used to investigate the morphologic and surface changes associated with various surface modifications to human hair. These included extraction with a series of solvents, bleaching, and treatment with a cationic copolymer. The study assessed the ability of these techniques to distinguish the changes in surface properties, including morphology and friction coefficient, as manifested in changes brought about by the indicated surface modifications. While topographic morphology can easily be investigated with contact AFM. LFM offers an additional tool for probing the surface distribution of oils and waxes. The removal of surface lipids from the fiber surface was accomplished using soxhlet extraction with t-butanol and n-hexane, while the free internal lipids (within the fiber structure) were removed by extraction with a mixture of chloroform and methanol (70:30, v/v). In addition, the surface of hair was modified with the cationic polymer, co(vinyl pyrrolidone-methacrylamidopropyl trimethylammonium chloride [PVP/MAPTAC]), and its distribution on the surface was monitored. Ambient AFM and LFM studies of surface modified and native fibers clearly indicate that when investigated as a function of tip loading force, the different modifications result in changes of the friction coefficient, which increase in this order: native, bleached, solvent extracted, and polymer-treated hair. Friction images show surface variations that are interpreted as areas of varying lipid film coverage. In addition, topographic images of the fibers show the presence of small pores, which become increasingly prevalent upon solvent extraction. 相似文献
6.
Conductive atomic force microscopy (CAFM) and Kelvin force microscopy (KFM) were used to measure the resistance of isolated single-walled carbon nanotubes (SWNTs). By analyzing the current map and surface potential obtained from CAFM and KFM methods respectively, the intrinsic resistance of SWNTs could be calculated. The results calculated by these two methods are the same for the same batch of SWNTs, which is on the order of 107–108 Ω. 相似文献
7.
The assemblage of molecular layers was investigated using scanning force microscopy (SFM). A wet-masking technique was used for the preparation of monolayer steps by partial masking of the substrate with an elastomeric mask during incubation in the modification buffers. The subsequent adsorption of biotin, streptavidin, and biotiny lated beads onto a gold substrate was investigated by SFM visualization of the created steps. The molecular layers were characterized based on measurements of step height and surface roughness. The simultaneous visualization of the surface before and after modification minimizes artifacts introduced by changes in tip shape or imaging parameters. 相似文献
8.
The use of large unfixed frozen tissue samples (10 × 10 × 5 mm3 ) for combined light microscopy (LM) and electron microscopy (EM) is described. First, cryostat sections are applied for various LM histochemical approaches including in situ hybridization, immunohistochemistry and metabolic mapping (enzyme histochemistry). When EM inspection is needed, the tissue blocks that were used for cryostat sectioning and are stored at −80 °C, are then fixed at 4 °C with glutaraldehyde/paraformaldehyde and prepared for EM according to standard procedures. Ultrastructurally, most morphological aspects of normal and pathological tissue are retained whereas cryostat sectioning at −25 °C does not have serious damaging effects on the ultrastructure. This approach allows simple and rapid combined LM and EM of relatively large tissue specimens with acceptable ultrastructure. Its use is demonstrated with the elucidation of transdifferentiated mouse stromal elements in human pancreatic adenocarcinoma explants grown subcutaneously in nude mice. Combined LM and EM analysis revealed that these elements resemble cartilage showing enchondral mineralization and aberrant muscle fibres with characteristics of skeletal muscle cells. 相似文献
9.
Atomic force microscopy (AFM) can reveal nanometer-scale structure of samples without the sample preparation techniques that involve dehydration. This is particularly important for hydrophilic organic materials. An asymmetric polysulfone ultrafiltration membrane (molecular weight cutoff rated at 10 kg/mol) was imaged by AFM. Sample mounting methods tried include cyanoacrylate, double-sided tape, and paraffin. Wax and tape bonding did not lead to usable images. Cyanoacrylate bonding resulted in images that appear to show 2.8° 109 pores/m2 approximately 3 nm in diameter, creating a porosity of 2%. This is consistent with estimates of molecular sizes for 10 kg/mol proteins, but not with the results of other AFM studies of similar membranes. The discrepancies can be explained largely by differences in sample preparation techniques. 相似文献
10.
Cross-sectional scanning tunneling microscopy (STM) was combined with atomic force microscopy (AFM) over the same area to characterize a cross-sectioned GaN light emitting diode. Because GaN is typically grown on a non-native substrate and also forms a wurtzite crystal structure, a cryogenic cleaving technique was developed to generate smooth surfaces. The depletion region surrounding the p-n junction was clearly identified using STM. Furthermore, by imaging under multiple sample biases, distinctions between the n-doped and p-doped GaN could be made. 相似文献
11.
Peng L Stephens BJ Bonin K Cubicciotti R Guthold M 《Microscopy research and technique》2007,70(4):372-381
We develop a method, which utilizes a combined atomic force microscope (AFM)/fluorescence microscope and small copy number polymerase chain reaction (PCR), to affinity-select individual aptamer species in a single cycle from a small pool of random-sequence oligonucleotides (oligos). In this method, a library of small beads, each of which is functionalized with fluorescent oligos of different sequences, is created. This library of oligo-functionalized beads is flowed over immobilized target molecules on a glass cover slip. High-affinity target-specific aptamers bind tightly to the target for prolonged periods and resist subsequent washes, resulting in a strong fluorescence signal on the substrate surface. This signal is observed from underneath the sample via fluorescence microscopy. The AFM tip, situated above the sample, is then directed to the coordinates of the fluorescence signal and is used to capture a three-dimensional high-resolution image of the surface-bound bead and to extract the bead (plus attached oligo). The extracted oligo is PCR-amplified, sequenced, and may then be subjected to further biochemical analysis. Here, we describe the underlying principles of this method, the required microscopy instrumentation, and the results of proof-of-principle experiments. In these experiments, we selected aptamers in eight trials from a binary pool containing a 1:1 mixture of thrombin aptamer oligo and a nonsense oligo. In each of the eight trials, the positive control aptamer was successfully detected, imaged, extracted, and characterized by PCR amplification and sequencing. In no case was the nonsense oligo selected, indicating good selectivity at this early stage of technology development. 相似文献
12.
Atomic force microscopy (AFM) has been used to study the translocation involving chromosomes 11 and 13. An amniocentesis procedure was performed at 18 weeks of pregnancy on a familial balanced translocation carrier mother whose karyotype was 46,XX,t(11;13) (q23;q34). After harvesting the tissue cultures, light microscopy studies (LM) have indicated that the fetus had the same translocation. A 0.3 microm gap region on the derivative chromosome 13 was determined by AFM; it was equivalent to a mid-sized G-band. The enhanced resolution of AFM with respect to its line measure analysis and three-dimensional image capture capability has allowed an extension and reconsideration of conclusions about chromosomal aberrations based on the study of LM preparations. In this manner, chromosomal disorders will be studied at nanoscale to help in the planning of new therapy strategies. 相似文献
13.
Atomic force microscopy was used to obtain images of the fracture surface of a tri-ethylene-tetramine and 4,4 (methyl thylidene) epoxy resin. Images were obtained in the mirror, mist, and hackle regions of each sample. Fractal dimensions were calculated from the images using the box dimension and contour analysis method. The box dimension fractal dimension increment for all regions on the fracture surfaces were determined to average 0.26 ± 0.06 and the contour analysis fractal dimension increment were determined to average 0.46 ± 0.05. The box dimension technique is shown to provide the “true” fractal dimension of the surface. The fractal dimension measurements for all three regions indicated that the fracture surface was self-affine and possibly self-similar. 相似文献
14.
A tube scanner is constructed which avoids tilting of the sample surface when areas at some distance off the tube axis are scanned. Such tilt occurs with conventional piezo tubes, causes distorted vertical scaling, and limits the field of view to a few μm. These problems are partly overcome with a new design, which also uses a single tube, but with eight-segmented electrodes. It can be thought of being constructed of two four-segmented, conventional tubes, with the x- and y-sections in the two parts being connected crosswise. While no additional voltage supply is needed, the tube is forming an s-like shape, such that the bending of one half of the tube is compensated by a similar bending, but in the opposite direction, of the other half. Moreover, the displacement of the sample surface in z-direction can be compensated quantitatively by suitable compression or dilatation of the tube, which can always be calculated from the known lateral displacement of the axis. The performance of this scanner is demonstrated on steps of a calibration replica. 相似文献
15.
The technique demonstrated here provides features of both scanning tunnelling microscopy (STM) and atomic force microscopy (AFM). The metallic probe acts to record current variations and sense forces from the same sample area simultaneously. Thus, separate images may be recorded, in registry. The collected data allows real space correlations between some electrical properties and the geometric structure of a sample surface. The same tip is used since the geometry and condition of the tip can effect the data recordings. Platinum alloys, tungsten and graphite tips have been employed successfully. An AFM lever can respond to surface contact forces, within the elastic limits of the sample, while electric current is sensed by the tip of the lever. The usefulness of this experimental procedure is tested here by an application to semiconducting samples of Ag-doped CdTe in air and in paraffin oil media. 相似文献
16.
In typical scanning probe microscope experiment a three‐dimensional image of a substrate is obtained. For a given scanning mechanism, the time needed to image an area depends mainly on the number of samples and the size of the image. The imaging speed is further compromised by drifts associated with the substrate and the piezoscanner. It is therefore desirable to improve the imaging speed with limited impact to the effective resolution of the resulting image. By utilizing an adaptive sampling scheme with fractal compression technique, we have demonstrated that the number of the required samples can be significantly reduced with minimal impact to the image quality. SCANNING 30: 463–473, 2008. © 2008 Wiley Periodicals, Inc. 相似文献
17.
Scanning force microscopy (SFM) holds great promise for biological research. Two major problems that have confronted imaging with the scanning force microscope have been the distortion of the image and overestimation in measurements of lateral size due to the varying geometry and characteristics of the scanning tip. In this study, spherical colloidal gold particles (10, 20 and 40 nm in diameter) were used to determine (1) tip parameters (size, shape and semivertical angle); (2) the distortion of the image caused by the tip; and (3) the overestimation or broadening of lateral dimensions. These gold particles deviate little in size, are rigid and have a size similar to biological macromolecules. Images of the colloidal gold particles by SFM were compared with those obtained by electron microscopy (EM). The height of the gold particles as measured by SFM and EM was comparable and was little affected by the tip geometry. The measurements of the lateral dimensions of colloidal gold, however, showed substantial differences between SFM and EM in that SFM resulted in an overestimate of the lateral dimensions. Moreover, the distortion of images and broadening of lateral dimensions were specific to the SFM tip used. The calibration of the SFM tip with mica provided little clue as to the type of distortion and the amount of lateral broadening observed when the larger gold particles were scanned. The SFM image also depended on the orientation of the tip with respect to the specimen. Our results suggest that quantitative SFM imaging requires calibration to identify and account for both the distortions and the magnitude of lateral broadening caused by the cantilever tip. Calibration with gold particles is fast and nondestructive to the tip. The raw imaging data of the specimen can be corrected for the tip effect and true structural information can be derived. In summary, we present a simple and practical method for the calibration of the SFM tip using gold particles with a size in the range of biomacromolecules that allows: (1) selection of a cantilever tip that produces an image with minimal distortion; (2) quantitative determination of tip parameters; (3) reconstruction of the shape of the tip at different heights from the tip apex; (4) appreciation of the type of distortion that may be introduced by a specific tip and quantification of the overestimation of the lateral dimensions; and (5) calculation of the true structure of the specimen from the image data. The significance is that such calibration will permit quantitative and accurate imaging with SFM. 相似文献
18.
Yuki Suzuki Yuji Higuchi Kohji Hizume Masatoshi Yokokawa Shige H. Yoshimura Kenichi Yoshikawa Kunio Takeyasu 《Ultramicroscopy》2010
Nucleosome is a fundamental structural unit of chromatin, and the exposure from or occlusion into chromatin of genomic DNA is closely related to the regulation of gene expression. In this study, we analyzed the molecular dynamics of poly-nucleosomal arrays in solution by fast-scanning atomic force microscopy (AFM) to obtain a visual glimpse of nucleosome dynamics on chromatin fiber at single molecule level. The influence of the high-speed scanning probe on nucleosome dynamics can be neglected since bending elastic energy of DNA molecule showed similar probability distributions at different scan rates. In the sequential images of poly-nucleosomal arrays, the sliding of the nucleosome core particle and the dissociation of histone particle were visualized. The sliding showed limited fluctuation within ∼50 nm along the DNA strand. The histone dissociation occurs by at least two distinct ways: a dissociation of histone octamer or sequential dissociations of tetramers. These observations help us to develop the molecular mechanisms of nucleosome dynamics and also demonstrate the ability of fast-scanning AFM for the analysis of dynamic protein–DNA interaction in sub-seconds time scale. 相似文献
19.
Lateral force microscopy has been employed to investigate the frictional behaviour of atomic vacancies on the graphite surface. Such a study was only made possible by the controlled expansion of originally single‐atom vacancies into multiatom vacancies, employing oxygen plasma etching for this purpose. Enhanced friction was observed on the vacancy regions compared with pristine areas of graphite, the origin of which is examined and discussed. 相似文献
20.
Dürig U. Cross G. Despont M. Drechsler U. Häberle W. Lutwyche M.I. Rothuizen H. Stutz R. Widmer R. Vettiger P. Binnig G.K. King W.P. Goodson K.E. 《Tribology Letters》2000,9(1-2):25-32
The Millipede data storage concept is based on the parallel operation of a large number of micromechanical levers that function as AFM sensors. The technique holds promise to evolve into a novel ultrahigh-density, terabit-capacity, and high-data-rate storage technology. Thermomechanical writing and reading in very thin polymer (PMMA) films is used to store and sense 30–40 nm sized bits of similar pitch size, resulting in 400–500 Gbit/in2 storage densities. High data rates are achieved by operating very large arrays (32×32) of AFM sensors in parallel. Batch-fabrication of 32×32 AFM cantilever array chips has been achieved, and array reading and writing have been demonstrated. An important consideration for the Millipede storage project is the polymer dynamics on the size scale of one bit. Scaling of rheological parameters measured for macroscopic polymer samples is likely to be incorrect due to the finite length of the underlying molecular polymer chain, a size that is comparable to the bit itself. In order to shed light on these issues we performed lifetime studies of regular arrays of nanometer size patterns using light-scattering techniques. 相似文献