首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
针对电力系统负荷频率稳定控制问题,本文提出了一种时滞/采样相关的离散负荷频率控制(LFC)方案.首先,考虑通信网络传输时滞和反馈信号采样周期对系统的影响,建立闭环电力系统LFC模型.然后,基于建立的LFC模型,利用双边闭环Lyapunov泛函和LMI技术,提出了低保守性的时滞/采样相关稳定准则和控制器设计方法,确保所提控制方案能在一个较大的通信时滞和采样周期条件下保持电力系统稳定运行.最后,通过单区域和三区域电力系统验证所提方法的有效性.仿真结果表明,所设计LFC方案比现有其他LFC方案的控制性能更佳,鲁棒性更强,并且能在一定大小的通信时滞条件下提升电力系统的动态性能.  相似文献   

2.
建立含风储多域互联电力系统负荷频率控制(LFC)模型,同时考虑系统参数不确定性、储能系统和传统机组控制信道延时问题.为提高系统鲁棒性,降低储能系统的容量配置,针对含风储的LFC模型,设计滑模负荷频率控制器,并提出滑模负荷频率控制器和储能协调的控制策略.算例分析表明,所提出的协调控制策略在新能源大规模渗透和系统负荷波动情况下能够有效减小系统频率偏差和区域控制偏差,同时降低储能系统的配置容量,提高电力系统安全稳定运行的经济性.  相似文献   

3.
This paper compares Active Disturbance Rejection Control (ADRC), Proportional–Integral (PI) and ultra-local adaptive controller (also labeled intelligent-PID) when applied to Automatic Generation Control (AGC) for a multi-area power system with co-simulation of the communication system. The co-simulation platform PiccSIM integrates Simulink/Matlab and Network Simulator Ver. 2 (NS2) with real-time simulation data exchanged through Local Area Network (LAN). Instead of the traditional control center, automatic generation controller is embedded in each participating generation unit locally to avoid communication delay for the control signals. This new control scheme is referred to as fully distributed AGC. The performance of the proposed scheme is tested on a nonlinear model of New England (NE) 39-bus system with the co-simulated tie-line power flow communication delays. The simulation results present very promising performance and good robustness of ADRC in the presence of communication delays, suggesting that the stability of the overall cyber–physical system is enhanced significantly.  相似文献   

4.
In this paper, a hybrid gravitational search algorithm (GSA) and pattern search (PS) technique is proposed for load frequency control (LFC) of multi-area power system. Initially, various conventional error criterions are considered, the PI controller parameters for a two-area power system are optimized employing GSA and the effect of objective function on system performance is analyzed. Then GSA control parameters are tuned by carrying out multiple runs of algorithm for each control parameter variation. After that PS is employed to fine tune the best solution provided by GSA. Further, modifications in the objective function and controller structure are introduced and the controller parameters are optimized employing the proposed hybrid GSA and PS (hGSA-PS) approach. The superiority of the proposed approach is demonstrated by comparing the results with some recently published modern heuristic optimization techniques such as firefly algorithm (FA), differential evolution (DE), bacteria foraging optimization algorithm (BFOA), particle swarm optimization (PSO), hybrid BFOA-PSO, NSGA-II and genetic algorithm (GA) for the same interconnected power system. Additionally, sensitivity analysis is performed by varying the system parameters and operating load conditions from their nominal values. Also, the proposed approach is extended to two-area reheat thermal power system by considering the physical constraints such as reheat turbine, generation rate constraint (GRC) and governor dead band (GDB) nonlinearity. Finally, to demonstrate the ability of the proposed algorithm to cope with nonlinear and unequal interconnected areas with different controller coefficients, the study is extended to a nonlinear three unequal area power system and the controller parameters of each area are optimized using proposed hGSA-PS technique.  相似文献   

5.
A reliable approach based on a multi-verse optimization algorithm (MVO) for designing load frequency control incorporated in multi-interconnected power system comprising wind power and photovoltaic (PV) plants is presented in this paper. It has been applied for optimizing the control parameters of the load frequency controller (LFC) of the multi-source power system (MSPS). The MSPS includes thermal, gas, and hydro power plants for energy generation. Moreover, the MSPS is integrated with renewable energy sources (RES). The MVO algorithm is applied to acquire the ideal parameters of the controller for controlling a single area and a multi-area MSPS integrated with RES. HVDC link is utilized in shunt with AC multi-areas interconnection tie line. The proposed scheme has achieved robust performance against the disturbance in loading conditions, variation of system parameters, and size of step load perturbation (SLP). Meanwhile, the simulation outcomes showed a good dynamic performance of the proposed controller.  相似文献   

6.
Inter-area low frequency oscillation in power system is one of the major problems for bulk power transmission through weak tie lines.Use of wide-area signal is more effective than the local area signal in damping out the inter-area oscillations.Wide area measurement system(WAMS)is convenient to transmit the wide area signal through the communication channel to the remote location.Communication failure is one of the disastrous phenomena in a communication channel.In this paper,a dual input single output(DISO)Hm controller is designed to build the control resiliency by employing two highest observability ranking wide area signals with respect to the critical damping inter-area mode.The proposed controller can provide sufficient damping to the system and also the system remains stabilized if one of the wide-area signals is lost.The time delay is an unwanted phenomenon that degrades the performance of the controllers.The unified Smith predictor approach is used to design a Hm controller to handle the time delay.Kundur's two-area and IEEE-39 bus test systems are considered to verify the effectiveness of the proposed controller.From the simulation results,it is verified that,the proposed controller provides excellent damping performance at normal communication and improves the controller resiliency to counteract the communication failure.  相似文献   

7.
The deregulation of the electricity market made the open communication infrastructure an exigent need for future power system. In this scenario dedicated communication links are replaced by shared networks. These shared networks are characterized by random time delay and data loss. The random time delay and data loss may lead to system instability if they are not considered during the controller design stage. Load frequency control systems used to rely on dedicated communication links. To meet future power system challenges these dedicated networks are replaced by open communication links which makes the system stochastic. In this paper, the stochastic stabilization of load frequency control system under networked environment is investigated. The shared network is represented by three states which are governed by Markov chains. A controller synthesis method based on the stochastic stability criteria is presented in the paper. A one-area load frequency control system is chosen as case study. The effectiveness of the proposed method for the controller synthesis is tested through simulation. The derived proportion integration (PI) controller proves to be optimum where it is a compromise between compensating the random time delay effects and degrading the system dynamic performance. The range of the PI controller gains that guarantee the stochastic stability is determined. Also the range of the PI controller gains that achieve the robust stochastic stability is determined where the decay rate is used to measure the robustness of the system.  相似文献   

8.
Gear-box fault monitoring and detection is important for optimization of power generation and availability of wind turbines. The current industrial approach is to use condition monitoring systems, which runs in parallel with the wind turbine control system, using expensive additional sensors. An alternative would be to use the existing measurements which are normally available for the wind turbine control system. The usage of these sensors instead would cut down the cost of the wind turbine by not using additional sensors. One of these available measurements is the generator speed, in which changes in the gear-box resonance frequency can be detected. Two different time–frequency based approaches are presented in this paper. One is a filter based approach and the other is based on a Karhunen–Loeve basis. Both of them detect the gear-box fault with an acceptable detection delay of maximum 100s, which is neglectable compared with the fault developing time.  相似文献   

9.
In the bacteria foraging optimization algorithm (BFAO), the chemotactic process is randomly set, imposing that the bacteria swarm together and keep a safe distance from each other. In hybrid bacteria foraging optimization algorithm and particle swarm optimization (hBFOA–PSO) algorithm the principle of swarming is introduced in the framework of BFAO. The hBFOA–PSO algorithm is based on the adjustment of each bacterium position according to the neighborhood environment. In this paper, the effectiveness of the hBFOA–PSO algorithm has been tested for automatic generation control (AGC) of an interconnected power system. A widely used linear model of two area non-reheat thermal system equipped with proportional-integral (PI) controller is considered initially for the design and analysis purpose. At first, a conventional integral time multiply absolute error (ITAE) based objective function is considered and the performance of hBFOA–PSO algorithm is compared with PSO, BFOA and GA. Further a modified objective function using ITAE, damping ratio of dominant eigenvalues and settling time with appropriate weight coefficients is proposed to increase the performance of the controller. Further, robustness analysis is carried out by varying the operating load condition and time constants of speed governor, turbine, tie-line power in the range of +50% to ?50% as well as size and position of step load perturbation to demonstrate the robustness of the proposed hBFOA–PSO optimized PI controller. The proposed approach is also extended to a non-linear power system model by considering the effect of governor dead band non-linearity and the superiority of the proposed approach is shown by comparing the results of craziness based particle swarm optimization (CRAZYPSO) approach for the identical interconnected power system. Finally, the study is extended to a three area system considering both thermal and hydro units with different PI coefficients and comparison between ANFIS and proposed approach has been provided.  相似文献   

10.
《Journal of Process Control》2014,24(10):1596-1608
In this paper, a novel hybrid Differential Evolution (DE) and Pattern Search (PS) optimized fuzzy PI/PID controller is proposed for Load Frequency Control (LFC) of multi-area power system. Initially a two-area non-reheat thermal system is considered and the optimum gains of the fuzzy PI/PID controller are optimized employing a hybrid DE and PS (hDEPS) optimization technique. The superiority of the proposed controller is demonstrated by comparing the results with some recently published modern heuristic optimization techniques such as DE, Bacteria Foraging Optimization Algorithm (BFOA), Genetic Algorithm (GA) and conventional Ziegler Nichols (ZN) based PI controllers for the same interconnected power system. Furthermore, robustness analysis is performed by varying the system parameters and operating load conditions from their nominal values. It is observed that the optimum gains of the proposed controller need not be reset even if the system is subjected to wide variation in loading condition and system parameters. Additionally, the proposed approach is further extended to multi-area multi-source power system with/without HVDC link and the gains of fuzzy PID controllers are optimized using hDEPS algorithm. The superiority of the proposed approach is shown by comparing the results with recently published DE optimized PID controller and conventional optimal output feedback controller for the same power systems. Finally, Reheat turbine, Generation Rate Constraint (GRC) and time delay are included in the system model to demonstrate the ability of the proposed approach to handle nonlinearity and physical constraints in the system model.  相似文献   

11.
This paper addresses the problem of controlling wind energy conversion (WEC) systems involving permanent magnet synchronous generator (PMSG) fed by IGBT-based buck-to-buck rectifier–inverter. The prime control objective is to maximize wind energy extraction which cannot be achieved without letting the wind turbine rotor operate in variable-speed mode. Interestingly, the present study features the achievement of the above energetic goal without resorting to sensors of wind velocity, PMSG speed and load torque. To this end, an adaptive output-feedback control strategy devoid of any mechanical sensor is developed (called sensorless), based on the nonlinear model of the whole controlled system and only using electrical variables measurements. This control strategy involves: (i) a sensorless online reference-speed optimizer designed using the turbine power characteristic to meet the maximum power point tracking (MPPT) requirement; (ii) a nonlinear speed regulator designed by using the backstepping technique; (iii) a sensorless interconnected adaptive state observer providing online estimates of the rotor position as well as speed and load/turbine torque. The proposed output-feedback control strategy is backed by a formal analysis showing that all control objectives are actually achieved. Several simulations show that the control strategy enjoys additional robustness properties.  相似文献   

12.

This paper investigates the combined effect of actuator saturation and time-delay on load frequency control (LFC) of a wind-integrated power system (WIPS). Actuator saturation is represented in two different approaches such as polytopic and sector bounding. Delay-discretization-based sliding mode \(H_{\infty }\) control approach is proposed to design a novel LFC scheme. The proposed control scheme requires present as well as delayed states information as input to the controller. This requirement of control scheme is fulfilled by adopting a finite known delay. This finite known delay used in controller design is discretized into delay intervals. Lyapunov–Krasovskii functional is defined for each delay interval, and \(H_{\infty }\) stabilization criteria for the closed loop WIPS are derived in linear matrix inequality framework using Wirtinger-based inequality. The proposed control scheme is tested by considering a numerical example of two-area WIPS.

  相似文献   

13.
The ultra-supercritical boiler-turbine unit is required to accommodate large-range load following to maintain the stability of grid frequency. However, the input delay in the coal pulverizing process poses a challenge to the coordinated control of the boiler-turbine unit, which is always neglected in existing works but dramatically affects the stability of steam pressure and temperature. In this paper, to handle the delay caused by coal pulverizing, a predictor-based delay compensation structure is developed for producing a delay-free control framework for the throttle steam pressure. Moreover, to overcome intrinsic nonlinearities in the dynamics of the boiler-turbine unit, the unknown system dynamics estimator is employed in the controllers' design for the steam enthalpy in the separator and active power of the turbine. Thus, precise and fast regulation for the active power output can be achieved under wide load following task. The salient merit of the proposed control is that the overshot of the throttle steam pressure and the specific enthalpy in the separator can be significantly alleviated, which is necessary for turbine blade. A Lyapunov-Krasovskii functional is introduced to deal with the time delay in the stability proof. Finally, the proposed coordinated control is validated in three typical working scenarios.  相似文献   

14.
A synergetic approach to designing nonlinear adaptive control of a shipboard power plant turbine based on the introduction of invariant manifolds into the state space of the system under examination is developed. Based on the proposed approach, novel nonlinear adaptive controllers ensuring the adaptation of the turbine to non-measured external load are designed. By way of example, the design of a nonlinear dynamic external load observer based on the adaptation principle on manifolds from synergetic control theory is considered. The adaptive controls make it possible to dynamically estimate the external disturbance in real time and suppress it.  相似文献   

15.
The ?1-gain filtering problem of positive linear discrete-time systems based on networked communication is investigated in this paper. A filter system model in which the sampled signals are transmitted through the unreliable communication channels is constructed for a positive system. An event-triggered scheme in a linear form, which is different from the prior literatures, is designed to determine whether the signal packet should be transmitted to the filter or not. Network-induced delays are considered while handling the packet transmission. By using the linear Lyapunov function method, a sufficient condition to ensure the existence of the network-based positive filter satisfying ?1-gain performance is proposed. The desired filter design method for the positive system is presented by using a linear programming approach. A numerical example with practical considerations is given to verify the proposed theoretical results.  相似文献   

16.
针对由于风能的不确定性、风力发电机的大惯性以及风力发电系统的响应延迟性等造成的风力发电机输出有功功率在一定范围内有波动的问题,提出了一种新型双馈风力发电机有功功率平滑控制策略。该控制策略在全风速范围内采用变浆与变速协调控制策略,并在其基础上增加了一个有功功率误差控制环节,将转子电压辅助控制指令值作为反馈量加入原来的转子电压控制指令值,通过控制SPWM脉冲发生器来实现风力发电机定子输出有功功率的平滑控制。Matlab/Simulink仿真结果表明,与传统有功功率控制策略相比,该新型有功功率平滑控制策略有效抑制了双馈风力发电机输出有功功率的波动。  相似文献   

17.
This article presents a novel load frequency control (LFC) approach using colliding bodies optimizer (CBO) for frequency stabilization of interlinked multiarea electric power systems. The optimal parameters of the suggested CBO-based proportional–integral–derivative-filter controller ascertain an effective LFC solution. First, a well-known and widely used linearized two-area nonreheated thermal power system is examined to demonstrate the efficacy of the proposed approach. The effectiveness of the proposed method is analyzed by comparing the outcomes of several recently presented LFC schemes. The performance analysis shows a settling time improvement of 3.10%, 14.29%, and 18.66% in the case of area-1 and area-2 frequencies and tie-line power deviations compared with an imperialist competitive algorithm (ICA)-based controller. The robustness of the proposed scheme is also evaluated in the presence of various operating scenarios. Additionally, the work is extended to a two-area nonreheated hydrothermal power system. The proposed method shows an improvement of over 60% in the performance index compared with several existing techniques-based controllers such as optics-inspired optimization, gray-wolf optimization, quasi-oppositional differential search algorithm, bacterial foraging optimization algorithm, and ICA.  相似文献   

18.
In many industrial robotic servo applications there is a need to track periodic reference signals and/or reject periodic disturbances. Moreover, time-delays are usually unavoidable in control systems due to the sensoring and communication delays. This paper presents an alternative repetitive control design for systems with constant time-delays in both forward and feedback control channels, which are dedicated to track/reject periodic signals. An additional delay is introduced together with the plant delays to construct an internal model for periodic signals, and a simple compensator based on the plant model inverse is utilized to stabilize the closed-loop system. Sufficient stability conditions of the closed-loop system and the robustness analysis against modeling uncertainties are studied. The proposed idea is further extended for general time-delay systems with only a delay term in the forward control channel. The “plug-in” structure used in conventional repetitive control designs is avoided, so that it leads to a simpler control configuration, i.e. only a proportional parameter and the cutoff frequency of a low-pass filter are required to be selected. Simulations based on a hard disk drive system and practical experiments on a rotary robotic servo system are provided to evaluate the effectiveness of the proposed method.  相似文献   

19.
所提出的智能型电源线资料传输系统,是以电源线作为信号传输的系统,以HOLTEK MCU单片机作为控制单元,控制载波及信号的频率,以变化的载波及信号的频率先传送的测试信号,后再由收到的信号品质评估最佳的载波及信号的频率,以此频率传送的摇手信号,待另一电路回应信号后,便以此频率传送及接收资料。  相似文献   

20.
针对风电介入下的多区域互联电力系统,提出一种分布式经济模型预测负荷频率控制策略.通过将大规模互联电力系统分解成若干个动态耦合的子系统,这些子系统能够利用网络交流并共享信息,使得各区域的控制器实现各自优化问题的求解.同时,在满足状态约束和控制输入约束的前提下,遵循传统火力发电优先、风力发电配合的原则,通过在线求解优化问题,实现风电介入下的多区域互联电力系统的负荷频率控制.为了提高系统整体运行经济性,所提出的分布式经济模型预测控制器将负荷调频成本、燃料消耗成本以及风力发电成本等经济性指标考虑在内.仿真结果表明,在阶跃负荷扰动下,所设计的控制器不仅可以满足调频要求,在降低计算负担和提高经济性能方面也具有一定优势.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号